Author:
Lazzús Juan A,Salfate Ignacio
Abstract
An artificial neural network was used for forecasting of long-term wind speed data (24 and 48 hours ahead) in La Serena City (Chile). In order to obtain a more effective correlation and prediction, a particle swarm algorithm was implemented to update the weights of the network. 43800 data points of wind speed were used (years 2003- 2007), and the past values of wind speed, relative humidity, and air temperature were used as input parameters, considering that these meteorogical parameters are more readily available around the globe. Several neural network architectures were studied, and the optimum architecture was determined by adding neurons in systematic form and evaluating the root mean square error (RMSE) during the learning process. The results show that the meteorological variables used as input parameters, have influential effects on the good training and predicting capabilities of the chosen network, and that the hybrid neural network can forecast the hourly wind speed with acceptable accuracy, such as: RMSE=0.81 [m·s−1], MSE=0.65 [m·s−1] 2 and R2 =0.97 for 24-hours-ahead wind speed prediction, and RMSE=0.78, MSE=0.634 [m·s−1] 2 and R2 =0.97 for 48-hours-ahead wind speed prediction. Predicción a largo plazo de la velocidad de viento en la ciudad de La Serena (Chile) utilizando un algoritmo híbrido de red neuronal-enjambre de partículasResumenUna red neuronal artificial fue utilizada para la predicción de datos de la velocidad de viento a largo plazo (24 y 48 horas en adelanto) en la Ciudad de La Serena (Chile). Para obtener una efectiva correlación y predición, se implementó una optimización de enjambre de particulas para actualizar los pesos de la red. Se emplearon 43800 datos de velocidad de viento (años 2003-2007), y los valores pasados de velocidad del viento, humedad relativa y temperatura del aire fueron utilizados como parámetros de entrada, considerando que estos parámetros meteorológicos se encuentran fácilmente disponibles en todo el mundo. Se estudiaron varias arquitecturas de redes neuronales y la arquitectura optima se determine añadiendo neuronas de forma sistemática y evaluando la raíz del error cuadrático medio (RMSE) durante el proceso de aprendizaje. Los resultados muestran que las variables meteorológicas utilizadas como parámetros de entrada, tienen un efecto positivo sobre el correcto entrenamiento y capacidades predictivas de la red, y que la red neural híbrida puede pronosticar la velocidad del viento horaria con una precisión aceptable, como un RMSE=0.81 [m·s−1], MSE=0.65 [m·s−1] 2 y R2 =0.97 para la predicción de la velocidad del viento de 24 horas en adelanto, y un RMSE=0.78, MSE=0.634 [m·s−1] 2 and R2 =0.97 para la predicción de la velocidad del viento de 48 horas en adelanto
Publisher
Universidad Nacional de Colombia
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献