Long-term prediction of wind speed in La Serena City (Chile) using hybrid neural network-particle swarm algorithm

Author:

Lazzús Juan A,Salfate Ignacio

Abstract

An artificial neural network was used for forecasting of long-term wind speed data (24 and 48 hours ahead) in La Serena City (Chile). In order to obtain a more effective correlation and prediction, a particle swarm algorithm was implemented to update the weights of the network. 43800 data points of wind speed were used (years 2003- 2007), and the past values of wind speed, relative humidity, and air temperature were used as input parameters, considering that these meteorogical parameters are more readily available around the globe. Several neural network architectures were studied, and the optimum architecture was determined by adding neurons in systematic form and evaluating the root mean square error (RMSE) during the learning process. The results show that the meteorological variables used as input parameters, have influential effects on the good training and predicting capabilities of the chosen network, and that the hybrid neural network can forecast the hourly wind speed with acceptable accuracy, such as: RMSE=0.81 [m·s−1], MSE=0.65 [m·s−1] 2 and R2 =0.97 for 24-hours-ahead wind speed prediction, and RMSE=0.78, MSE=0.634 [m·s−1] 2 and R2 =0.97 for 48-hours-ahead wind speed prediction. Predicción a largo plazo de la velocidad de viento en la ciudad de La Serena (Chile) utilizando un algoritmo híbrido de red neuronal-enjambre de partículasResumenUna red neuronal artificial fue utilizada para la predicción de datos de la velocidad de viento a largo plazo (24 y 48 horas en adelanto) en la Ciudad de La Serena (Chile). Para obtener una efectiva correlación y predición, se implementó una optimización de enjambre de particulas para actualizar los pesos de la red. Se emplearon 43800 datos de velocidad de viento (años 2003-2007), y los valores pasados de velocidad del viento, humedad relativa y temperatura del aire fueron utilizados como parámetros de entrada, considerando que estos parámetros meteorológicos se encuentran fácilmente disponibles en todo el mundo. Se estudiaron varias arquitecturas de redes neuronales y la arquitectura optima se determine añadiendo neuronas de forma sistemática y evaluando la raíz del error cuadrático medio (RMSE) durante el proceso de aprendizaje. Los resultados muestran que las variables meteorológicas utilizadas como parámetros de entrada, tienen un efecto positivo sobre el correcto entrenamiento y capacidades predictivas de la red, y que la red neural híbrida puede pronosticar la velocidad del viento horaria con una precisión aceptable, como un RMSE=0.81 [m·s−1], MSE=0.65 [m·s−1] 2 y R2 =0.97 para la predicción de la velocidad del viento de 24 horas en adelanto, y un RMSE=0.78, MSE=0.634 [m·s−1] 2 and R2 =0.97 para la predicción de la velocidad del viento de 48 horas en adelanto

Publisher

Universidad Nacional de Colombia

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3