Abstract
In this paper, we consider the problem of nding optimal populationdesigns for within-individual covariance matrices discrimination andparameter estimation in nonlinear mixed eects models. A compound optimality criterion is provided, which combines an estimation criterion and a discrimination criterion. We used the D-optimality criterion for parameter estimation, which maximizes the determinant of the Fisher information matrix. For discrimination, we propose a generalization of the T-optimality criterion for xed-eects models. Equivalence theorems are provided for these criteria. We illustrated the application of compound criteria with an example in a pharmacokinetic experiment.
Publisher
Universidad Nacional de Colombia
Subject
Statistics and Probability
Reference20 articles.
1. Atkinson, A. C. (2008), 'DT-Optimum Designs for Model Discrimination and Parameter Estimation', Journal of Statistical Planning and Inference 138, 56-64.
2. Atkinson, A. C., Donev, A. N. & Tobias, R. D. (2007), Optimum Experimental Designs, with SAS, first edn, Oxford, New York.
3. Atkinson, A. C. & Fedorov, V. V. (1975), 'The Design of Experiments for Discriminating Between Two Rival Models', Biometrika 62(1), 57-70.
4. Castañeda, M. E. & López-Ríos, V. I. (2016), 'Optimal Population Designs for Discrimination Between Two Nested Nonlinear Mixed Effects Models', Ciencia en Desarrollo 7(1), 71-81.
5. Chernoff, H. (1953), 'Locally Optimal Designs for Estimating Parameters', The Annals of Mathematical of Statistics 24(4), 586-602.