马里亚纳海沟南段TS01测线的广角地震探测和地壳结构

李子正, 丘学林, 贺恩远, 张浩宇, 王强. 2023. 马里亚纳海沟南段TS01测线的广角地震探测和地壳结构. 地球物理学报, 66(11): 4691-4704, doi: 10.6038/cjg2022P0923
引用本文: 李子正, 丘学林, 贺恩远, 张浩宇, 王强. 2023. 马里亚纳海沟南段TS01测线的广角地震探测和地壳结构. 地球物理学报, 66(11): 4691-4704, doi: 10.6038/cjg2022P0923
LI ZiZheng, QIU XueLin, HE EnYuan, ZHANG HaoYu, WANG Qiang. 2023. Crustal structures of Southmost Mariana Trench revealed by wide-angle seismic profile TS01. Chinese Journal of Geophysics (in Chinese), 66(11): 4691-4704, doi: 10.6038/cjg2022P0923
Citation: LI ZiZheng, QIU XueLin, HE EnYuan, ZHANG HaoYu, WANG Qiang. 2023. Crustal structures of Southmost Mariana Trench revealed by wide-angle seismic profile TS01. Chinese Journal of Geophysics (in Chinese), 66(11): 4691-4704, doi: 10.6038/cjg2022P0923

马里亚纳海沟南段TS01测线的广角地震探测和地壳结构

  • 基金项目:

    国家重点研发计划(2018YFC0309800), 国家自然科学基金(41906061, 42106082)和南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0204)联合资助

详细信息
    作者简介:

    李子正, 男, 1995年生, 工程师, 研究方向为海洋地球物理学和微地震监测.E-mail: lizzh.swty@sinopec.com

    通讯作者: 丘学林, 男, 1964年生, 研究员, 博士生导师, 主要从事天然地震和人工折射地震的地壳深部结构研究.E-mail: xlqiu@scsio.ac.cn
  • 中图分类号: P738

Crustal structures of Southmost Mariana Trench revealed by wide-angle seismic profile TS01

More Information
  • 马里亚纳海沟是西太俯冲系统的重要组成部分, 因复杂的地质环境和活跃的俯冲, 长期以来是地球科学领域关注和研究的热点区域.广角地震测线TS01位于马里亚纳俯冲系统的最南段, 横穿卡罗琳海底高原、马里亚纳海沟和弧前地块.本文基于测线上9个OBS台站所记录的高质量反射、折射震相, 通过震相走时拟合和正演模拟的方法, 获得了TS01测线的精细速度结构.此外, 本文还通过卫星重力数据和多波束水深数据, 计算获得了布格重力异常, 反映了区域的地壳厚度变化; 并沿测线进行了重力模拟, 与速度模型相互验证、共同约束了TS01测线的壳幔结构.最终结果显示, 弧前地块呈现楔状, 海沟内壁速度值较低, 呈现了构造侵蚀的特征; 俯冲板片的地壳速度在4.0~7.2 km·s-1之间, 厚12~13 km, 该厚度介于正常洋壳和海底高原类型地壳之间; OBS台站丰富的反射震相约束了上下板片交界面、俯冲板片中地壳和莫霍面等关键地质界面.重力模拟揭示了上地幔顶部的蛇纹石化现象.本文研究结果为揭示海底高原附近的俯冲动力学机制提供了有力支撑.

  • 加载中
  • 图 1 

    马里亚纳海沟南段的地理位置、构造单元和水深特征

    Figure 1. 

    Location, tectonic and bathymetric map of Southmost Mariana Trench

    图 2 

    OBS01台站的地震剖面、震相识别和射线追踪结果

    Figure 2. 

    Seismic records, seismic phases, and raytracing of OBS01

    图 3 

    OBS02台站的地震剖面、震相识别和射线追踪结果

    Figure 3. 

    Seismic records, seismic phases, and raytracing of OBS02

    图 4 

    OBS05台站的地震剖面、震相识别和射线追踪结果

    Figure 4. 

    Seismic records, seismic phases, and raytracing of OBS05

    图 5 

    OBS06台站的地震剖面、震相识别和射线追踪结果

    Figure 5. 

    Seismic records, seismic phases, and raytracing of OBS06

    图 6 

    OBS09台站的地震剖面、震相识别和射线追踪结果

    Figure 6. 

    Seismic records, seismic phases, and raytracing of OBS09

    图 7 

    最终的正演结果图

    Figure 7. 

    Final velocity model obtained by forward modeling

    图 8 

    马里亚纳海沟南段布格重力异常图

    Figure 8. 

    Bouguer gravity anomaly of Southmost Mariana Trench

    图 9 

    TS01测线重力模拟结果

    Figure 9. 

    Result of gravity modeling of profile TS01

    表 1 

    正演模型的震相参数

    Table 1. 

    Seismic phases of the forward modeling

    震相种类 震相数量 RMS/ms 卡方值 拾取误差/ms
    Pg 2825 60 1.444 50
    PtopP 198 63 1.104 60
    PmP 372 81 1.838 60
    PcP 312 66 1.213 60
    Pn 256 111 1.935 80
    总计 3963 67 1.476 -
    下载: 导出CSV

    表 2 

    重力模型参数

    Table 2. 

    Parameters of the gravity model

    模型区域 密度/(g·cm-3)
    海水层 1.03
    沉积层 2.2
    地壳 2.64~2.90
    弧前破碎水化地壳 2.58
    干燥地幔 3.2~3.3
    蛇纹石化地幔 2.93
    下载: 导出CSV
  •  

    Ao W, Zhao M H, Qiu X L, et al. 2010. The correction of shot and OBS position in the 3D seismic experiment of the SW Indian Ocean Ridge. Chinese Journal of Geophysics (in Chinese), 53(12): 2982-2991, doi: 10.3969/j.issn.0001-5733.2010.12.022.

     

    Bangs N L, Christeson G L, Shipley T H. 2003. Structure of the Lesser Antilles subduction zone backstop and its role in a large accretionary system. Journal of Geophysical Research: Solid Earth, 108(B7): 2358, doi: 10.1029/2002JB002040.

     

    Bloomer S H. 1983. Distribution and origin of igneous rocks from the landward slopes of the Mariana Trench: Implications for its structure and evolution. Journal of Geophysical Research: Solid Earth, 88(B9): 7411-7428. doi: 10.1029/JB088iB09p07411

     

    Brocher T M, Parsons T, Tréhu A M, et al. 2003. Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin. Geology, 31(3): 267-270. doi: 10.1130/0091-7613(2003)031<0267:SEFWSF>2.0.CO;2

     

    Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the Earth's crust. Bulletin of the Seismological Society of America, 95(6): 2081-2092. doi: 10.1785/0120050077

     

    Cai C, Wiens D A, Shen W S, et al. 2018. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. Nature, 563(7731): 389-392. doi: 10.1038/s41586-018-0655-4

     

    Chen H, Qiu X L, He E Y, et al. 2019. Accurate measurement and inversion for the seafloor positions of Hadal landers. Chinese Journal of Geophysics (in Chinese), 62(5): 1744-1754, doi: 10.6038/cjg2019M0009.

     

    Christeson G L, Mcintosh K D, Shipley T H. 2000. Seismic attenuation in the Costa Rica margin wedge: amplitude modeling of ocean bottom hydrophone data. Earth and Planetary Science Letters, 179(2): 391-405. doi: 10.1016/S0012-821X(00)00118-7

     

    Contreras-Reyes E, Grevemeyer I, Watts A B, et al. 2011. Deep seismic structure of the Tonga subduction zone: Implications for mantle hydration, tectonic erosion, and arc magmatism. Journal of Geophysical Research: Solid Earth, 116(B10): B10103, doi: 10.1029/2011JB008434.

     

    Dong D D, Zhang Z Y, Bai Y L, et al. 2018. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction. Tectonophysics, 722: 410-421. doi: 10.1016/j.tecto.2017.11.030

     

    Doo W B, Lo C L, Kuo-Chen H, et al. 2015. Exhumation of serpentinized peridotite in the northern Manila subduction zone inferred from forward gravity modeling. Geophysical Research Letters, 42(19): 7977-7982. doi: 10.1002/2015GL065705

     

    Eakin D H, Mcintosh K D, Van Avendonk H J A, et al. 2014. Crustal-scale seismic profiles across the Manila subduction zone: The transition from intraoceanic subduction to incipient collision. Journal of Geophysical Research: Solid Earth, 119(1): 1-17. doi: 10.1002/2013JB010395

     

    Farnetani C G, Richards M A, Ghiorso M S. 1996. Petrological models of magma evolution and deep crustal structure beneath hotspots and flood basalt provinces. Earth and Planetary Science Letters, 143(1-4): 81-94. doi: 10.1016/0012-821X(96)00138-0

     

    Fujiwara T, Tamura C, Nishizawa A, et al. 2000. Morphology and tectonics of the Yap Trench. Marine Geophysical Researches, 21(1-2): 69-86.

     

    Gerya T V, Fossati D, Cantieni C, et al. 2009. Dynamic effects of aseismic ridge subduction: Numerical modelling. European Journal of Mineralogy, 21(3): 649-661. doi: 10.1127/0935-1221/2009/0021-1931

     

    Hao T Y, Huang S, Xu Y, et al. 2008. Comprehensive geophysical research on the deep structure of Northeastern South China Sea. Chinese Journal of Geophysics (in Chinese), 51(6): 1785-1796.

     

    Hao T Y, Hu W J, Xing J, et al. 2014. The Moho depth map (1: 5000000) in the land and seas of China and adjacent areas and its geological implications. Chinese Journal of Geophysics (in Chinese), 57(12): 3869-3883, doi: 10.6038/cjg20141202.

     

    He E Y, Qiu X L, Chen C X, et al. 2022. Deep crustal structure across the Challenger Deep: Tectonic deformation and strongly serpentinization layer. Gondwana Research, 118(135-152), https://doi.org/10.1016/j.gr.2023.02.020. doi: 10.1016/j.gr.2023.02.020

     

    Kim Y M, Lee S M, Okino K. 2009. Comparison of gravity anomaly between mature and immature intra-oceanic subduction zones in the western Pacific. Tectonophysics, 474(3-4): 657-673. doi: 10.1016/j.tecto.2009.05.004

     

    Kitada K, Seama N, Yamazaki T, et al. 2006. Distinct regional differences in crustal thickness along the axis of the Mariana Trough, inferred from gravity anomalies. Geochemistry, Geophysics, Geosystems, 7(4): Q04011, doi: 10.1029/2005GC001119.

     

    Kobayashi K. 2004. Origin of the Palau and Yap trench-arc systems. Geophysical Journal International, 157(3): 1303-1315. doi: 10.1111/j.1365-246X.2003.02244.x

     

    Korenaga J, Sager W W. 2012. Seismic tomography of Shatsky Rise by adaptive importance sampling. Journal of Geophysical Research: Solid Earth, 117(B8): B08102, doi: 10.1029/2012JB009248.

     

    Lee S M. 2004. Deformation from the convergence of oceanic lithosphere into Yap trench and its implications for early-stage subduction. Journal of Geodynamics, 37(1): 83-102. doi: 10.1016/j.jog.2003.10.003

     

    Li Z Z, Qiu X L, Zhang J Z, et al. 2021. Cross-line airgun shooting and accurate relocation of POBS in the "Hadal Deep". Chinese Journal of Geophysics (in Chinese), 64(9): 3333-3343, doi: 10.6038/cjg2021O0472.

     

    Lim E, Sutherland M G, Friday D Z, et al. 2013. Bathymetric digital elevation model of the Mariana trench. Boulder, CO: NOAA National Geophysical Data Center, U. S. Dept. of Commerce.

     

    Liu S Q, Zhao M H, Sibuet J C, et al. 2018. Geophysical constraints on the lithospheric structure in the northeastern South China Sea and its implications for the South China Sea geodynamics. Tectonophysics, 742-743: 101-119. doi: 10.1016/j.tecto.2018.06.002

     

    Lü C C, Hao T Y, Xu Y. 2009. Complete Bouguer correction in the oceanic gravity exploration. Progress in Geophysics (in Chinese), 24(2): 513-521, doi: 10.3969/j.issn.1004-2903.2009.02.020.

     

    Martinez F, Stern R J, Kelley K A, et al. 2018. Diffuse extension of the Southern Mariana Margin. Journal of Geophysical Research: Solid Earth, 123(1): 892-916. doi: 10.1002/2017JB014684

     

    Miller M S, Gorbatov A, Kennett B L N. 2006. Three-dimensional visualization of a near-vertical slab tear beneath the southern Mariana arc. Geochemistry, Geophysics, Geosystems, 7(6): Q06012, doi: 10.1029/2005GC001110.

     

    Miura R, Nakamura Y, Koda K, et al. 2004. "Rootless" serpentinite seamount on the southern Izu-Bonin forearc: Implications for basal erosion at convergent plate margins. Geology, 32(6): 541-544. doi: 10.1130/G20319.1

     

    Oakley A J, Taylor B, Moore G F. 2008. Pacific Plate subduction beneath the central Mariana and Izu-Bonin fore arcs: New insights from an old margin. Geochemistry, Geophysics, Geosystems, 9(6): Q06003, doi: 10.1029/2007GC001820.

     

    Planert L, Kopp H, Lueschen E, et al. 2010. Lower plate structure and upper plate deformational segmentation at the Sunda-Banda arc transition, Indonesia. Journal of Geophysical Research: Solid Earth, 115(B8): B08107, doi: 10.1029/2009JB006713.

     

    Qiu X L, Zhao M H, Ao W, et al. 2011. OBS survey and crustal structure of the Southwest Sub-basin and Nansha Block, South China Sea. Chinese Journal of Geophysics (in Chinese), 54(12): 3117-3128, doi: 10.3969/j.issn.0001-5733.2011.12.012.

     

    Sandwell D T, Müller R D, Smith W H, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205): 65-67. doi: 10.1126/science.1258213

     

    Scherwath M, Kopp H, Flueh E R, et al. 2010. Fore-arc deformation and underplating at the northern Hikurangi margin, New Zealand. Journal of Geophysical Research: Solid Earth, 115(B6): B06408, doi: 10.1029/2009JB006645.

     

    Shulgin A, Kopp H, Mueller C, et al. 2009. Sunda-Banda arc transition: Incipient continent-island arc collision (northwest Australia). Geophysical Research Letters, 36(10): L10304, doi: 10.1029/2009GL037533.

     

    Sleeper J D, Martinez F, Fryer P, et al. 2021. Diffuse spreading, a newly recognized mode of crustal accretion in the southern Mariana Trough backarc basin. Geosphere, 17(5): 1382-1404. doi: 10.1130/GES02360.1

     

    Stern R J. 2004. Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters, 226(3-4): 275-292. doi: 10.1016/S0012-821X(04)00498-4

     

    Suyehiro K, Takahashi N, Ariie Y, et al. 1996. Continental crust, crustal underplating, and low-Q upper mantle beneath an oceanic island arc. Science, 272(5260): 390-392. doi: 10.1126/science.272.5260.390

     

    Takahashi N, Kodaira S, Tatsumi Y, et al. 2009. Structural variations of arc crusts and rifted margins in the southern Izu-Ogasawara arc-back arc system. Geochemistry, Geophysics, Geosystems, 10(9): Q09X08, doi: 10.1029/2008GC002146.

     

    Wallace L M, Ellis S, Mann P. 2008. Tectonic block rotation, arc curvature, and back-arc rifting: Insights into these processes in the Mediterranean and the western Pacific. IOP Conference Series: Earth and Environmental Science, 2(1): 12010.

     

    Wan K Y, Lin J, Xia S H, et al. 2019. Deep seismic structure across the southernmost Mariana trench: Implications for arc rifting and plate hydration. Journal of Geophysical Research: Solid Earth, 124(5): 4710-4727. doi: 10.1029/2018JB017080

     

    Yao C L, Hao T Y, Guan Z N, et al. 2003. High-speed computation and efficient storage in 3D gravity and magnetic inversion based on genetic algorithms. Chinese Journal of Geophysics (in Chinese), 46(2): 252-258.

     

    Zelt C A, Smith R B. 1992. Seismic traveltime inversion for 2-D crustal velocity structure. Geophysical Journal International, 108(1): 16-34. doi: 10.1111/j.1365-246X.1992.tb00836.x

     

    Zeng H L. 2005. Gravity Field and Gravity Exploration (in Chinese). Beijing: Geological Publishing House.

     

    Zhang J, Zhang G L. 2020. Geochemical and chronological evidence for collision of proto-Yap arc/Caroline plateau and rejuvenated plate subduction at Yap trench. Lithos, 370-371: 105616, doi: 10.1016/j.lithos.2020.105616.

     

    Zhang J C, Sager W W, Korenaga J. 2016. The seismic Moho structure of Shatsky Rise oceanic plateau, northwest Pacific Ocean. Earth and Planetary Science Letters, 441: 143-154. doi: 10.1016/j.epsl.2016.02.042

     

    Zhang L, Zhao M H, Wang J, et al. 2013. Correction of OBS position and recent advances of 3D seismic exploration in the central sub-basin of South China Sea. Earth Science-Journal of China University of Geosciences (in Chinese), 38(1): 33-42. doi: 10.3799/dqkx.2013.004

     

    Zhang Z Y, Dong D D, Sun W D, et al. 2019. Subduction erosion, crustal structure, and an evolutionary model of the northern Yap subduction zone: New observations from the latest geophysical survey. Geochemistry, Geophysics, Geosystems, 20(1): 166-182. doi: 10.1029/2018GC007751

     

    Zhang Z Y, Dong D D, Sun W D, et al. 2021. Investigation of an oceanic plateau formation and rifting initiation model implied by the Caroline Ridge on the Caroline Plate, western Pacific. International Geology Review, 63(2): 193-207. doi: 10.1080/00206814.2019.1707126

     

    Zhao M H, Qiu X L, Xia K Y, et al. 2004. Onshore-offshore seismic data processing and preliminary results in NE South China Sea. Journal of Tropical Oceanography (in Chinese), 23(1): 58-63.

     

    Zhou Z Y, Lin J. 2018. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench. Tectonophysics, 734-735: 59-68. doi: 10.1016/j.tecto.2018.04.008

     

    Zhu G H, Yang H F, Lin J, et al. 2019. Along-strike variation in slab geometry at the southern Mariana subduction zone revealed by seismicity through ocean bottom seismic experiments. Geophysical Journal International, 218(3): 2122-2135. doi: 10.1093/gji/ggz272

     

    Zhu G H, Wiens D A, Yang H F, et al. 2021. Upper mantle hydration indicated by decreased shear velocity near the southern Mariana trench from Rayleigh wave tomography. Geophysical Research Letters, 48(15): e2021GL093309, doi: 10.1029/2021GL093309.

     

    Zhu J J, Kopp H, Papenberg C, et al. 2010. Margin architecture and seismic attenuation in the central Costa Rican forearc. Marine Geology, 276(1-4): 30-41. doi: 10.1016/j.margeo.2010.07.004

     

    敖威, 赵明辉, 丘学林等. 2010. 西南印度洋中脊三维地震探测中炮点与海底地震仪的位置校正. 地球物理学报, 53(12): 2982-2991, doi: 10.3969/j.issn.0001-5733.2010.12.022.

     

    陈瀚, 丘学林, 贺恩远等. 2019. 深渊着陆器坐底位置的精确测量和反演计算. 地球物理学报, 62(5): 1744-1754, doi: 10.6038/cjg2019M0009.

     

    郝天珧, 黄松, 徐亚等. 2008. 南海东北部及邻区深部结构的综合地球物理研究. 地球物理学报, 51(6): 1785-1796. doi: 10.3321/j.issn:0001-5733.2008.06.019

     

    郝天珧, 胡卫剑, 邢健等. 2014. 中国海陆1: 500万莫霍面深度图及其所反映的地质内涵. 地球物理学报, 57(12): 3869-3883, doi: 10.6038/cjg20141202.

     

    李子正, 丘学林, 张佳政等. 2021. 海斗深渊区十字放炮与POBS精确位置校正. 地球物理学报, 64(9): 3333-3343, doi: 10.6038/cjg2021O0472.

     

    吕川川, 郝天珧, 徐亚. 2009. 海洋重力勘探中的完全布格校正. 地球物理学进展, 24(2): 513-521, doi: 10.3969/j.issn.1004-2903.2009.02.020.

     

    丘学林, 赵明辉, 敖威等. 2011. 南海西南次海盆与南沙地块的OBS探测和地壳结构. 地球物理学报, 54(12): 3117-3128, doi: 10.3969/j.issn.0001-5733.2011.12.012.

     

    姚长利, 郝天珧, 管志宁等. 2003. 重磁遗传算法三维反演中高速计算及有效存储方法技术. 地球物理学报, 46(2): 252-258. doi: 10.3321/j.issn:0001-5733.2003.02.020

     

    曾华霖. 2005. 重力场与重力勘探. 北京: 地质出版社.

     

    张莉, 赵明辉, 王建等. 2013. 南海中央次海盆OBS位置校正及三维地震探测新进展. 地球科学——中国地质大学学报, 38(1): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301008.htm

     

    赵明辉, 丘学林, 夏戡原等. 2004. 南海东北部海陆联测地震数据处理及初步结果. 热带海洋学报, 23(1): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY200401008.htm

  • 加载中

(9)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-12-07
修回日期:  2023-03-20
上线日期:  2023-11-10

目录