Frequency-domain electromagnetic methods for exploration of the shallow subsurface:A review
-
摘要: 适用于近地表(2000m以内)勘探的频率域电磁法主要有音频大地电磁法(audio-frequency magnetotellurics, AMT), 无线电大地电磁法(radio-magnetotellurics, RMT), 可控源音频大地电磁法(controlled source audio-frequency magnetotellurics, CSAMT), 广域电磁法(Wide Field Electromagnetic Method, WFEM).本文拟从最新的数据采集技术、数据处理技术、正反演算法、实例等四个方面, 论述适用于浅部勘探的AMT, RMT, CSAMT和WFEM方法的国内外最新进展, 总结目前AMT, RMT, CSAMT和WFEM方法遇到的困难, 对潜在的发展方向提出建议.综述表明:(1)张量测量、多站阵列、多站叠加可提高AMT、RMT和CSAMT数据的质量.利用近区数据WFEM法可获得良好的效果.国产与国外仪器在质量方面的差距正在逐步缩小.(2)数学形态滤波技术、Hilbert-Huang变换等可有效分离出有用的数据, 局部畸变仍然是亟待解决的难题, 需要更为深入的研究.(3)矢量有限元与非结构网格的出现大幅度提高了有限元处理复杂电磁问题模拟的精度与应用范围, 成为目前电磁正演的首选工具.完全非线性反演算法仍然局限于1D、2D问题, 共轭梯度法和高斯牛顿算法等为解决3D问题的发展趋势.地质约束的引入和多数据联合反演可以减小反演的非唯一性.各向异性的反演为目前反演研究的热点之一.(4)野外数据解释的正确性严重依赖于对地下结构先期的维性判别, 在2D特性不明显、3D特性明显时, 需要采用3D进行反演解释.Abstract: Four electromagnetic(EM)methods are widely used in exploration of the shallow subsurface(above depth 2000 meters), which are the audio-frequency magnetotellurics(AMT), radio-magnetotellurics(RMT), controlled source audio-frequency magnetotellurics(CSAMT)and the wide-field electromagnetic methods(WFEM). The purpose of this review is to present the advances of these technologies from five aspects, i.e. data collection, data processing algorithms, forward modeling, inversion algorithms and case studies. We also point out their current difficulties and suggest the potential development trends.To address the issues above, we have made a detailed investigation to the recent literature and chosen the most significant papers published.(1)Data acquisition and instrument. Along with the growing power of EM data collection instruments, the tensor measurement has been commonly adopted. In order to obtain more reliable data, instrument array or multi-instruments have been widely used in the field. By large funds for developing instruments, the quality of domestic instruments is gradually approaching that of the foreign equipment.(2)Data processing algorithms. The time series of AMT data usually contains different types of noise, such as artificial square waves and industry noise around target zones. Therefore, the signal-to-noise ratio of AMT data is usually low. In order to obtain useful signals, we can utilize the robust digital morphological filtering technology. In transforming the time domain signal into the frequency domain, the Hilbert Huang transform is a suitable choice. Recently, the main reliable approach to estimate the tensor impedance is simultaneously using multi-channel multi-frequency data. As for the CSAMT and RMT methods, the state of art in the data acquisition is to identify near field and far field zones. A new idea is the wide-band electromagnetic acquisition technique, which presents a unified way to compute the apparent resistivity in both near field and far field zones. Compared to the AMT, RMT and CSAMT methods, the WFEM method can work better in the near field zone.(3)Forward modeling and inversion. In order to compute the EM responses for complicated AMT/RMT/CSAMT problems, the finite element method has become the indispensable tool. The edge-based finite-element methods have replaced the nodal-based finite-element methods. To have a capability of dealing with complicated topography, the unstructured grids instead of traditional structured grids have become more important. The high efficiency of direct solvers such as MUMPS and Pardiso have played an important role in solving multi-source EM problems. As for the inversion, to simulate 3D cases, two inversion algorithms, which are the nonlinear conjugate gradient method and Gauss-Newton algorithm, have been applied to successfully performing 3D inversion of AMT/RMT/CSAMT data. To further improve the inversion quality, the joint inversion scheme becomes more popular.(4)Applications. The above AMT/RMT/CSAMT methods are widely used in mineral resources exploration, geothermal resources or groundwater surveys, and environmental and engineering geophysics. In inverting the AMT/RMT/CSAMT data, we should analyze the possible dimensionality of the subsurface structure. When they show a 2D structure, the results by 2D inversion are reliable. However, for 3D cases, inversion results and geological interpretations must be based on 3D inversion algorithms.
-
Key words:
- Shallow subsurface exploration /
- Frequency-domain electromagnetic methods /
- AMT /
- RMT /
- CSAMT /
- WFEM
-
-
[1] Alumbaugh D L, Newman G A, Prevost L, et al. 1996. Three-dimensional, wideband electromagnetic modeling on massively parallel computers. Radio Science, 31(1):1-23.
[2] Alumbaugh D L, Newman G A. 1997. Three-dimensional massively parallel electromagnetic inversion-part II. Analysis of a crosswell electromagnetic experiment. Geophysical Journal International, 128(2):355-363.
[3] Amestoy P R, Duff I S, L'Excellent J Y, et al. 2002. A fully asynchronous multi-frontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications, 23(1):15-41.
[4] Aprea C, Booker J R, Torquil Smith J. 1997. The forward problem of electromagnetic induction:accurate finite-difference approximations for two dimensional discrete boundaries with arbitrary geometry. Geophysical Journal International, 129(1):29-40.
[5] Avdeev D B, Kuvshinov A V, Pankratov O V, et al. 2002. Three dimensional induction logging problems, Part I:an integral equation solution and model comparisons. Geophysics, 67(2):413-426.
[6] Avdeev D B. 2005. Three-dimensional electromagnetic modelling and inversion from theory to application. Surveys in Geophysics, 26(6):767-799.
[7] Badea E A, Everett M E, Newman G A, et al. 2001. Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials. Geophysics, 66(3):786-799.
[8] Bahr K. 1988. Interpretation of the magnetotelluric impedance tensor:regional induction and local telluric distortion. J. Geophys., 62:119-127.
[9] Bahr K. 1991. Geological noise in magnetotelluric data:a classification of distortion types. Physics of the Earth and Planetary Interiors, 66(1-2):24-38.
[10] Bala J, Pita A. 2010. Validation of joint inversion of direct current and electromagnetic measurements. Acta Geophysica, 58(1):114-125.
[11] Banks R J. 1998. The effects of Non-stationary noise on electromagnetic response estimates. Geophysical Journal International, 135(2):553-563.
[12] Barcelona H, Favetto A, Peri V G, et al. 2013. The potential of audiomagnetotellurics in the study of geothermal fields:A case study from the northern segment of the La Candelaria Range, northwestern Argentina. Journal of Applied Geophysics, 88:83-93.
[13] Bastani M. 2001. EnviroMT:A new controlled source/radio magnetotelluric system. Uppsala:Acta Universitatis Upsaliensis.
[14] Bastani M, Malehmir A, Ismail N, et al. 2009. Delineating hydrothermal stockwork copper deposits using controlled-source and radio-magnetotelluric methods:A case study from northeast Iran. Geophysics, 74(5):B167-B181.
[15] Bastani M, Persson, L, Beiki M, et al. 2013. A radio magnetotelluric study to evaluate the extents of a limestonequarry in Estonia. Geophysical Prospecting, 61(3):678-687.
[16] Beamish D, Travassos J M. 1992. The use of the D+ solution in magnetotelluric interpretation. Journal of Applied Geophysics, 29(1):1-19.
[17] Berdichevsky M N, Dimitriev V T. 1976. Basic principles of interpretation of magnetotelluric sounding curves.//Ada S A ed. Geoelectric and Geothermal Studies,(East-Central Europe, Soviet-Asia), KAPG Geophysical Monograph, Akadémiai Kiadó, Budapest. 165-221.
[18] Bielecka M, Danek T, Wojdyla M, et al. 2009. Neural networks application to reduction of train caused distortions in magnetotelluric measurement data. Schedae Informaticae, 17-18:75-86.
[19] Berner R U. 2010. Numerical modelling in geo-electromagnetics:advances and challenges. Surveys in Geophysics, 31(2):225-245.
[20] Booker J R. 2014. The magnetotelluric phase tensor:a critical review. Surveys in Geophysics, 35(1):7-40.
[21] Boschetto N B, Hohmann G W. 1991. Controlled-source audio frequency magnetotelluric responses of three-dimensional bodies. Geophysics, 56(2):255-264.
[22] Cai J H, Tang J T, Hua X R, et al. 2009. An analysis method for magnetotelluric data based on the Hilbert-Huang transform. Exploration Geophysics, 40(2):197-205.
[23] Cai J H, Tang J T, Wang X C. 2011. Human noise elimination for magnetotelluric data based on empirical mode decomposition. Journal of Central South University(Science and Technology)(in Chinese), 42(6):1786-1790.
[24] Cai J H. 2013. Magnetotelluric response function estimation based on Hilbert-Huang transform. Pure and Applied Geophysics, 170(11):1899-1911.
[25] Cai J H. 2014. A combinatorial filtering method for magnetotelluric time-series based on Hilbert-Huang transform. Exploration Geophysics, 45(2):63-73.
[26] Caldwell T G, Bibby H M, Brown C. 2004. The magnetotelluric phase tensor. Geophysical Journal International, 158(2):457-469.
[27] Campanyà J, Ledo J, Queralt P, et al. 2014. A new methodology to estimate Magnetotelluric(MT)Tensor relationships:Estimation of Local transfer-functions by Combining Interstation Transfer-functions(ELICIT). Geophysical Journal International, 198(1):484-494.
[28] Emin Candansayar M, Tezkan B. 2008. Two-dimensional joint inversion of radiomagnetotelluric and direct current resistivity data. Geophysical Prospecting, 56(5):737-749.
[29] Cao C Q. 1978. The apparent resistivity for layered earth. Chinese J. Geophys.(Acta Geophysica Sinica)(in Chinese), 21(3):248-261.
[30] Chant I J, Hastie L M. 1992. Time-frequency analysis of magnetotelluric data. Geophysical Journal International, 111(2):399-413.
[31] Chave A D, Thomson D J, Ander M E. 1987. On the robust estimation of power spectra, coherences, and transfer functions. Journal of Geophysical Research:Solid Earth(1978—2012), 92(B1):633-648.
[32] Chave A D, Thomson D J. 1989. Some Comments on magnetotelluric response function estimation. Journal of Geophysical Research:Solid Earth(1978—2012), 94(B10):14215-14225.
[33] Chave A D, Smith J T. 1994. On electric and magnetic galvanic distortion tensor decompositions. Journal of Geophysical Research, 99(B3):4669-4682.
[34] Chave A D, Thomson D J. 2003. A bounded influence regression estimator based on the statistics of the hat matrix. Journal of the Royal Statistical Society:Series C(Applied Statistics), 52(3):307-322.
[35] Chave A D, Luther D S, Meinen C S. 2004. Correction of motional electric field measurements for galvanic distortion. Journal of Atmospheric and Oceanic Technology, 21(2):317-330.
[36] Chen H Y, Wei W B, Jing J E, et al. 2012. The generalized S-transform and its application in the processing of magnetotelluric sounding data. Progress in Geophysics(in Chinese), 27(3):988-996, doi:10.6038/j.issn.1004-2903.
[37] Chen J, Jegen-Kulcsar M, Moorkamp M. 2010. The empirical mode decomposition and hilbert instantaneous spectrum on MT data Processing. //20th International Electromagnetic Induction Workshop, Giza, Egypt.
[38] Chen M S, Yan S. 2005. Analytical study on field zones, record rules, shadow and source overprint effects in CSAMT exploration. Chinese J. Geophys.(in Chinese), 48(4):951-958.
[39] Chen W Y, Xue G Q. 2014. Effective skin depth of whole EM field due to a grounded wire source. Chinese J. Geophys.(in Chinese), 57(7):2314-2320, doi:10.6038/cjg20140725.
[40] Chen X B, Zhao G Z. 2009. Study on the transmitting mechanism of CSELF waves:response of the alternating current point source in the uniform space. Chinese J. Geophys.(in Chinese), 52(8):2158-2164, doi:10.3969/j.issn.0001-5733.2009.08.026.
[41] Chen X B, Cai J T, Wang L F, et al. 2014. Refined techniques for magnetotelluric data processing and two-dimensional inversion(IV):Statistical image method based on multi-site, multi frequency tensor decomposition. Chinese J. Geophys.(in Chinese), 57(6):1946-1957, doi:10.6038/cjg20140625.
[42] Cheng D F, Wang J, Li X P, et al. 2004. Development in the research of HSSMT instrument. Progress in Geophysics(in Chinese), 19(4):778-781, doi:10.3969/j.issn.1004-2903.2004.04.012.
[43] Cheng H, Li D Q. 2014. A new electromagnetic field division method for horizontal electric dipole. Journal of Central South University(Science and Technology)(in Chinese), 45(7):2250-2258.
[44] Christopherson K R. 2012. Magnetotellurics(MT):Technique, Interpretation, and Application. http://www.searchanddiscovery.com/documents/geophysical/christopherson/index.htm.
[45] Coggon J H. 1971. Electromagnetic and electrical modeling by the finite element method. Geophysics, 36(1):132-155.
[46] Commer M, Newman G A. 2008. New advances in three-dimensional controlled-source electromagnetic inversion. Geophysical Journal International, 172(2):513-535.
[47] Cooley J W, Tukey J W. 1965. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19(90):297-301.
[48] Cooley J W, Lewis P A, Welch P D. 1969. The fast Fourier transform and its applications. IEEE Transactions on Education, 12(1):27-34.
[49] Cui J L, Deng M, Jing J E, et al. 2013. Using independent component analysis to process magnetotelluric data. Applied Mechanics and Materials, 295-298:2795-2798.
[50] Das U C. 1995. Apparent resistivity curves in Controlled-source electromagnetic sounding directly reflecting true resistivities in a layered earth. Geophysics, 60(1):53-60.
[51] Di Q Y, Wang M Y, Wang R, et al. 2008. Study of the long dipole and large power electromagnetic field. Chinese J. Geophys.(in Chinese), 51(6):1917-1928.
[52] Di Q Y, Fang G Y, Zhang Y M. 2013. Research of the Surface Electromagnetic Prospecting(SEP)system. Chinese J. Geophys.(in Chinese), 56(11):3629-3639, doi:10.6038/cjg20131104.
[53] Doherty J. 1988. EM modelling using surface integral equations. Geophysical Prospecting, 36(6):644-668.
[54] Egbert G D, Booker J R. 1986. Robust estimation of geomagnetic transfer functions. Geophysical Journal International, 87(1):173-194.
[55] Egbert G D, Booker J R. 1989. Multivariate analysis of geomagnetic array data:1. The response space. Journal of Geophysical Research:Solid Earth(1978—2012), 94(B10):14227-14247.
[56] Egbert G D, Livelybrooks D W. 1996. Single Station magnetotelluric impedance estimation:coherence weighting and the regression M-estimate. Geophysics, 61(4):964-970.
[57] Egbert G D. 1997. Robust Multiple-station magnetotelluric data processing. Geophysical Journal International, 130(2):475-496.
[58] Egbert G D. 2002. Processing and interpretation of electromagnetic induction array data. Surveys in Geophysics, 23(2-3):207-249.
[59] Escalas M, Queralt P, Ledo J, et al. 2013. Polarization analysis of magnetotelluric time series using a wavelet-based scheme:a method for detection and characterization of cultural noise sources. Physics of the Earth and Planetary Interiors, 218:31-50.
[60] Everett M E. 2011. Theoretical developments in electromagnetic induction geophysics with selected applications in the near surface. Surveys in Geophysics, 33(1):29-63.
[61] Farquharson C G, Miensopust M P. 2011. Three-dimensional finite-element modelling of magnetotelluric data with a divergence correction. Journal of Applied Geophysics, 75(4):699-710.
[62] Feng B, Wang J L, Zhou X W, et al. 2013. Application of full-region apparent resistivity of CSAMT Ex in exploration. Coal Geology & Exploration(in Chinese), 41(6):78-82.
[63] Fischer G, Weibel P. 1991. A new look at an old problem:Magnetotelluric modelling of 1-D structures. Geophysical Journal International, 106(1):161-167.
[64] Fontes S L, Harinarayana T, Dawes G, et al. 1988. Processing of noisy magnetotelluric data using digital filters and additional data selection criteria. Physics of the Earth and Planetary Interiors, 52(1):30-40.
[65] Franke A, Borner R U, Spitzer K. 2008. Is there a most efficient formulation of the three-dimensional magnetotelluric boundary value problem? //19th Workshop on Electromagnetic Induction in the Earth, Beijing, China.
[66] Fu C M, Di Q Y, Xu C, et al. 2012. Electromagnetic fields for different type sources with effect of the ionosphere. Chinese J. Geophys.(in Chinese), 55(12):3958-3968, doi:10.6038/j.issn.0001-5733.2012.12.008.
[67] Fu C M, Di Q Y, An Z G. 2013. Application of the CSAMT method to groundwater exploration in a metropolitan environment. Geophysics, 78(5):B201-B209.
[68] Gamble T, Goubau W M, Clarke J. 1979. Magnetotellurics with a remote magnetic reference. Geophysics, 44(1):53-68.
[69] Gao W. 1991. Line source effects on magnetotelluric responses. Chinese J. Geophys.(in Chinese), 34(2):210-215.
[70] García X, Jones A G. 2005. A new methodology for the acquisition and processing of Audio-Magnetotelluric(AMT)data in the AMT dead band. Geophysics, 70(5):G119-G126.
[71] Grayver A V, Bürg M. 2014. Robust and scalable 3D geo-electromagnetic modelling approach using the finite element method. Geophysical Journal International, 198(1):110-125.
[72] Groom R W, Bailey R C. 1989. Decomposition of magnetotelluric impedance tensors in the presence of local Three-Dimensional galvanic distortion. Journal of Geophysical Research:Solid Earth(1978—2012), 94(B2):1913-1925.
[73] Groom R W, Bailey R C. 1991. Analytic investigations of the effects of Near-Surface Three-dimensional galvanic scatters on MT tensor decompositions. Geophysics, 56(4):496-518.
[74] Haber E, Ascher U M, Aruliah D A, et al. 2000. Fast simulation of 3D electromagnetic problems using potentials. Journal of Computational Physics, 163(1):150-171.
[75] Hattingh M. 1989. The use of Data-adaptive filtering for noise removal on magnetotelluric data. Physics of the Earth and Planetary Interiors, 53(3-4):239-254.
[76] He J S. 1991. Controlled Source Audio-frequency Magnetotellurics(in Chinese). Changsha:Central South University Press.
[77] He J S. 2010a. Closed addition in a three-element set and 2n sequence pseudo-random signal coding. Journal of Central South University(Science and Technology)(in Chinese), 41(2):632-627.
[78] He J S. 2010b. Wide field electromagnetic sounding methods. Journal of Central South University(Science and Technology)(in Chinese), 41(3):1065-1072.
[79] He J S. 2010c. Wide Field Electromagnetic Method and Pseudo Random Signal Method(in Chinese). Beijing:Higher Education Press.
[80] He L F, Wang X B, Wang C X. 1999. Improving the s/n ratio of MT data by wavelet analysis. Journal of Chengdu University of Technology(in Chinese), 26(3):299-302.
[81] Hohmann G W. 1975. Three-dimensional induced polarization and electromagnetic modeling. Geophysics, 40(2):309-324.
[82] Hou J S, Mallan R K, Torres-Verdín C. 2006. Finite-difference simulation of borehole EM measurements in 3D anisotropic media using coupled scalar-vector potentials. Geophysics, 71(5):G225-G233.
[83] Hu W Y, Abubakar A, Habashy T M. 2009. Joint electromagnetic and seismic inversion using structural constraints. Geophysics, 74(6):R99-R109.
[84] Hu Y F, He J S. 2015. Comparison of wide field electromagnetic method with CSAMT method in strong interferential mining area(in Chinese). Changsha:Central South of University.
[85] Huang H P, Piao H R. 1992. Full-wave apparent resistivity from vertical magnetic dipole frequency sounding on a layered earth. Chinese J. Geophys.(in Chinese), 35(3):389-395.
[86] Huang L J, Lu G F, Liu R D, et al. 2004. The application of electromagnetic sounding method in deep geothermal investigation. Geophysical & Geochemical Exploration(in Chinese), 28(6):493-495.
[87] Jiang L, Xu Y X. 2013. Multi-station superposition for magnetotelluric signal. Studia Geophysica Et Geodaetica, 57(2):276-291.
[88] Jing J E, Wei W B, Chen H Y, et al. 2012. Magnetotelluric sounding data processing based on generalized S transformation. Chinese J. Geophys.(in Chinese), 55(12):4015-4022, doi:10.6038/j.issn.00015733.
[89] Jones A G, Chave A D, Egbert G D, et al. 1989. A comparison of techniques for magnetotelluric response function estimation. Journal of Geophysical Research:Solid Earth(1978—2012), 94(B10):14201-14213.
[90] Jones A G, Groom R W. 1993. Strike-angle determination from the magnetotelluric impedance tensor in the presence of noise and local distortion:Rotate at your peril! Geophysical Journal International, 113(2):524-534.
[91] Kalscheuer T, Pedersen L B, Siripunvaraporn W. 2008. Radiomagnetotelluric two-dimensional forward and inverse modelling accounting for displacement currents. Geophysical Journal International, 175(2):486-514.
[92] Kappler K N. 2012. A data variance technique for automated despiking of magnetotelluric data with a remote reference. Geophysical Prospecting, 60(1):179-191.
[93] Key K, Weiss C. 2006. Adaptive finite-element modeling using unstructured grids:the 2D magnetotelluric example. Geophysics, 71(6):G291-G299.
[94] La Terra E F, Menezes P T L. 2012. Audiomagnetotelluric 3D imaging of the Regis kimberlite pipe, Minas Gerais, Brazil. Journal of Applied Geophysics, 77:30-38.
[95] Larsen J C, Mackie R L, Manzella A, et al. 1996. Robust smooth magnetotelluric transfer functions. Geophysical Journal International, 124(3):801-819.
[96] Lei D, Zhang G H, Huang G Y, et al. 2014. The application of tensor CSAMT method. Chinese Journal of Engineering Geophysics(in Chinese), 11(3):286-294.
[97] Les'niak A, Danek T, Wojdya M. 2009. Application of Kalman filter to noise reduction in multichannel data. Schedae Informaticae, 17-18:63-73.
[98] Li D Q, Di Q Y, Wang M Y. 2011. One-dimensional electromagnetic fields forward modeling for "earth-ionosphere" mode. Chinese J. Geophys.(in Chinese), 54(9):2375-2388, doi:10.3969/j.issn.0001-5733.2011.09.021.
[99] Li Y G, Key K. 2007. 2D marine controlled-source electromagnetic modeling:Part 1—an adaptive finite-element algorithm. Geophysics, 72(2):WA51-WA62.
[100] Liao Z L, Zhang Y J, Chen W B, et al. 2006. Available persist exploitation and utilization of geothermal resources. China Mining Magazine(in Chinese), 15(10):8-11.
[101] Lin P R, Zheng C J, Shi F S, et al. 2006. The research of integrated electromagnetic method system. Acta Geologica Sinica(in Chinese), 80(10):1539-1548.
[102] Lin P R, Guo P, Shi F S, et al. 2010. A study of the techniques for large-depth and multi-functional electromagnetic survey. Acta Geoscientica Sinica(in Chinese), 31(2):149-154.
[103] Lin W. 2009. Transition region electromagnetic field characteristics of the CSAMT method. Geophysical & Geochemical Exploration(in Chinese), 33(2):148-150.
[104] Liu E H, Lamontagne Y. 1998. Geophysical application of a new surface integral equation method for EM modeling. Geophysics, 63(2):411-423.
[105] Liu G M, Becker A. 1992. Evaluation of terrain effects in AEM surveys using the boundary element method. Geophysics, 57(2):272-278.
[106] Liu H, He L F, Wang X B, et al. 2004. Adaptability of wavelet analysis in MT noise-suppressed processing. Oil Geophysical Prospecting(in Chinese), 39(3):338-341.
[107] Luo W B, Li Q C, Tang J T. 2012. Coded source electromagnetic sounding method. Chinese J. Geophys.(in Chinese), 55(1):341-349, doi:10.6038/j.issn.0001-5733.2012.01.035.
[108] Mackie R L, Smith J T, Madden T R. 1994. Three-dimensional electromagnetic modeling using finite difference equations:The magnetotelluric example. Radio Science, 29(4):923-935.
[109] Manoj C, Nagarajan N. 2003. The application of artificial neural networks to magnetotelluric time-series analysis. Geophysical Journal International, 153(2):409-423.
[110] Mcneice G W, Jones A G. 2001. Multisite, multifrequency tensor decomposition of magnetotelluric data. Geophysics, 66(1):158-173.
[111] Meng Q K. 2013. Preliminary study of tensor CSAMT data acquisition and processing technology(in Chinese). Beijing:Chinese Academy of Geological Sciences.
[112] Mitsuhata Y, Uchida T. 2004. 3D magnetotelluric modeling using the T-Ω finite-element method. Geophysics, 69(1):108-119.
[113] Muoz G, Ritter O. 2013. Pseudo-remote reference processing of magnetotelluric data:A fast and efficient data acquisition scheme for local arrays. Geophysical Prospecting, 61(S1):300-316.
[114] Nam M J, Kim H J, Song Y, et al. 2007. 3D magnetotelluric modelling including surface topography. Geophysical Prospecting, 55(2):277-287.
[115] Nédélec J. 1986. A new family of mixed finite elements in R3. Numerische Mathematik, 50(1):57-81.
[116] Neukirch M, Garcia X. 2014. Nonstationary magnetotelluric data processing with instantaneous parameter. Journal of Geophysical Research:Solid Earth, 119(3):1634-1654.
[117] Newman G A, Alumbaugh D L. 1997. Three-dimensional massively parallel electromagnetic inversion—I. theory. Geophysical Journal International, 128(2):345-354.
[118] Newman G A, Alumbaugh D L. 1999. 3-D electromagnetic modeling and inversion on massively parallel computers. // Oristaglio M N, Spies B R eds. Three-Dimensional Electromagnetics. Society of exploration geophysicists, Geophysical Developments No. 7, Tulsa OK, 299-321.
[119] Newman G A, Alumbaugh D. 2002. Three-dimensional induction logging problems, part 2:a finite-difference solution. Geophysics, 67(2):484-491.
[120] Newman G A, Recher S, Tezkan B, et al. 2003. 3D inversion of a scalar radio magnetotelluric field data set. Geophysics, 68(3):791-802.
[121] Newman G A, Commer M, Carazzone J J. 2010. Imaging CSEM data in the presence of electrical anisotropy. Geophysics, 75(2):F51-F61.
[122] Oettinger G, Haak V, Larsen J C. 2001. Noise reduction in magnetotelluric Time-series with a new signal-noise separation method and its application to a field experiment in the Saxonian granulite massif. Geophysical Journal International, 146(3):659-669.
[123] Parker R L. 1980. The inverse problem of electromagnetic induction:existence and construction of solutions based on incomplete data. Journal of Geophysical Research:Solid Earth(1978—2012), 85(B8):4421-4428.
[124] Parker R L, Whaler K A. 1981. Numerical methods for establishing solutions to the inverse problem of electromagnetic induction. Journal of Geophysical Research:Solid Earth(1978—2012), 86(B10):9574-9584.
[125] Parker R L, Booker J R. 1996. Optimal One-dimensional inversion and bounding of magnetotelluric apparent resistivity and phase measurements. Physics of the Earth and Planetary Interiors, 98(3-4):269-282.
[126] Parry J R, Ward S H. 1971. Electromagnetic scattering from cylinders of arbitrary cross-section in a conductive half-space. Geophysics, 36(1):67-100.
[127] Penz S, Chauris H, Donno D, et al. 2013. Resistivity modelling with topography. Geophysical Journal International, 194(3):1486-1497.
[128] Prácser E, Szarka L. 1999. A correction to Bahr's "Phase Deviation" method for tensor decomposition. Earth, Planets and Space, 51(10):1019-1022.
[129] Puzyrev V J, Koldan J, de la Puente J, et al. 2013. A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling. Geophysical Journal International, 193(2):678-693.
[130] Raiche A P. 1974. An integral equation approach to three-dimensional modelling. Geophysical Journal of the Royal Astronomical Society, 36(2):363-376.
[131] Ren. 2012. New Developments in Numerical Modeling of Broadband Geo-electromagnetic Fields. Zurich:ETH Zurich Press.
[132] Ren Z Y, Tang J T. 2010. 3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method. Geophysics, 75(1):H7-H17
[133] Ren Z Y, Kalscheuer T, Greenhalgh S, et al. 2012. Boundary element solutions for broadband 3D geo-electromagnetic problems accelerated by multi-level fast multipole method. Geophysical Journal International, 192(2):473-499.
[134] Ren Z Y, Kalscheuer T, Greenhalgh S, et al. 2013. A goal-oriented adaptive finite-element approach for plane wave 3D electromagnetic modelling. Geophysical Journal International, doi:10.1093/gji/ggt154.
[135] Ren Z Y, Kalscheuer T, Greenhalgh S, et al. 2014. A finite-element based domain-decomposition approach for plane wave 3D electromagnetic modeling. Geophysics, 79(6):E255-E268.
[136] Ritter O, Junge A, Dawes G. 1998. New equipment and processing for magnetotelluric remote reference observations. Geophysical Journal International, 132(3):535-548.
[137] Schenk O, Grtner K. 2004. Solving unsymmetric sparse systems of linear equations with PARDISO. Future Generation Computer Systems, 20(3):475-487.
[138] Schwarzbach C, Brner R U, Spitzer K. 2011. Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics—a marine CSEM example. Geophysical Journal International, 187(1):63-74.
[139] Sheard S N, Ritchie T J, Christopherson K R, et al. 2005. Mining, environmental, petroleum, and engineering industry applications of electromagnetic techniques in geophysics. Surveys in Geophysics, 26(5):653-669.
[140] Sims W E, Bostick Jr F X, Smith H W. 1971. The estimation of magnetotelluric impedance tensor elements from measured data. Geophysics, 36(5):938-942.
[141] Siripunvaraporn W, Egbert G, Lenbury Y. 2002. Numerical accuracy of magnetotelluric modeling:a comparison of finite difference approximations. Earth, Planets and Space, 54(6):721-725.
[142] Siripunvaraporn W, Sarakorn W. 2011. An efficient data space conjugate gradient Occam's method for three-dimensional magnetotelluric inversion. Geophysical Journal International, 186(2):567-579.
[143] Smirnov M Y, Egbert G D. 2012. Robust principal component analysis of electromagnetic arrays with missing data. Geophysical Journal International, 190(3):1423-1438.
[144] Smirnov M Y. 2003. Magnetotelluric data processing with a robust statistical procedure having a high breakdown point. Geophysical Journal International, 152(1):1-7.
[145] Smith J T. 1996. Conservative modeling of 3-D electromagnetic fields, Part II:bi-conjugate gradient solution and an accelerator. Geophysics, 61(5):1319-1324.
[146] Smith R. 2014. Electromagnetic induction methods in mining geophysics from 2008 to 2012. Surveys in Geophysics, 35(1):123-156.
[147] Sokolova E Y, Varentsov M I, Group E P W. 2005. The RRMC Technique fights highly coherent EM noise. // Dtsch. Geophys. Ges. Potsdam, Germany, 124-136.
[148] Song S G, Tang J T, He J S. 1995. Wavelets analysis and the recognition, separation and removal of the static shift in electromagnetic soundings. Chinese J. Geophys.(in Chinese), 38(1):120-128.
[149] Spratt J E, Jones A G, Nelson K D, et al. 2005. Crustal structure of the India-Asia collision zone, Southern Tibet, from INDEPTH MT investigations. Physics of the Earth and Planetary Interiors, 150(1-3):227-237.
[150] Sternberg B K, Washburne J C, Pellerin L. 1988. Correction for the static shift in magnetotellurics using transient electromagnetic soundings. Geophysics, 53(11):1459-1468.
[151] Streich R. 2009. 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data:direct solution and optimization for high accuracy. Geophysics, 74(5):F95-F105.
[152] Sutarno D. 2008. Development of robust magnetotelluric impedance estimation:a review. Indonesian Journal of Physics, 16(3):79-89.
[153] Swift Jr C M. 1967. A magnetotelluric investigation an electrical conductivity anomaly in the southwestern United States . Massachusetts:Massachusetts Institute of Technology.
[154] Tang J T, He J S. 1993. Effective resistivity defined by the electromagnetic fields induced by horizontal electric dipole. Journal of Central South Institute of Mining and Metallurgy (in Chinese), 24(2):137-142.
[155] Tang J T, He J S. 1994a. A new method to define the full-zone resistivity in horizontal electric dipole frequency soundings on a layered earth. Chinese J. Geophys.(in Chinese), 37(4):543-552.
[156] Tang J T, He J S. 1994b. Impedance real part equivalent resistivity in frequency electromagnetic sounding of horizontal electric double source on horizontal multilayer media. Geophysical & Geochemical Exploration(in Chinese), 18(2):92-96.
[157] Tang J T, He J S. 2005. Methods and Applications of CSAMT(in Chinese). Changsha:Central South University Press.
[158] Tang J T, Hua X R, Cao Z M, et al. 2008. Hilbert-Huang transformation and noise suppression of magnetotelluric sounding data. Chinese J. Geophys.(in Chinese), 51(2):603-610.
[159] Tang J T, Cai J H, Ren Z Y, et al. 2009. Hilbert-Huang transform and time frequency analysis of magnetotelluric signal. Journal of Central South University(Science and Technology)(in Chinese), 40(5):1399-1405
[160] Tang J T, Zhou C, Zhang L C. 2011. A new apparent resistivity of CSAMT defined by electric field y-direction. Journal of Jilin University(Earth Science Edition)(in Chinese), 41(2):552-558.
[161] Tang J T, Li J, Xiao X, et al. 2012a. Mathematical morphology filtering and noise suppression of magnetotelluric sounding data. Chinese J. Geophys.(in Chinese), 55(5):1784-1793, doi:10.6038/j.issn.0001-5733.2012.05.036.
[162] Tang J T, Xu Z M, Xiao X, et al. 2012b. Effect rules of strong noise on magnetotelluric(MT)sounding in the Luzong ore cluster area. Chinese J. Geophys.(in Chinese), 55(12):4147-4159, 10.6038/j.issn.0001-5733.2012.12.027.
[163] Tang J T, Ge W N. 2012. Shadow and source overprint effects in 3D CSAMT. Computing Techniques for Geophysical & Geochemical Exploration(in Chinese), 34(1):19-26.
[164] Tang J T, Zhou C, Wang X Y, et al. 2013. Deep electrical structure and geological significance of Tongling ore district. Tectonophysics, 606:78-96.
[165] Tang J T, Zhang C, Xiao X, et al. 2013a. Comparison of methods for magnetotelluric impedance estimation. The Chinese Journal of Nonferrous Metals(in Chinese), 23(9):2351-2358.
[166] Tang J T, Zhou C, Xiao X. 2013b. Selection of minimum transmit-receive distance of CSAMT on complicated media. The Chinese Journal of Nonferrous Metals(in Chinese), 23(6):1681-1693.
[167] Tezkan B, Hrdt A, Gobashy M. 2000. Two-dimensional radiomagnetotelluric investigation of industrial and domestic waste sites in Germany. Journal of Applied Geophysics, 44(2-3):237-256.
[168] Tezkan B, Georgescu P, Fauzi U. 2005. A radiomagnetotelluric survey on an oil-contaminated area near the Brazi Refinery, Romania. Geophysical Prospecting, 53(3):311-323.
[169] Tezkan B, Goldman M, Greinwald S, et al. 1996. A joint application of radiomagnetotellurics and transient electromagnetics to the investigation of a waste deposit in Cologne(Germany). Journal of Applied Geophysics, 34(3):199-212.
[170] Torres-Verdín C, Bostick Jr F X. 1992. Principles of spatial surface electric field filtering in magnetotellurics:Electromagnetic Array Profiling(EMAP). Geophysics, 57(4):603-622.
[171] Trad D O, Travassos J M. 2000. Wavelet filtering of magnetotelluric data. Geophysics, 65(2):482-491.
[172] Turberg P, Müller I, Flury F. 1994. Hydrogeological investigation of porous environments by radio magnetotelluric-resistivity(RMT-R 12-240 kHz). Journal of Applied Geophysics, 31(1-4):133-143.
[173] Tzanis A, Beamish D. 1989. A high-resolution spectral study of audiomagnetotelluric data and noise interactions. Geophysical Journal International, 97(3):557-572.
[174] Vallée M A, Smith R S, Keating P. 2011. Metalliferous mining geophysics-State of the art after a decade in the new millennium. Geophysics, 76(4):W31-W50.
[175] Varentsov I M, Sokolova E Y, Martanus E R, et al. 2003. System of electromagnetic field transfer operators for the BEAR array of simultaneous soundings:methods and results. Izvestiya-Physics of the Solid Earth, 39(2):118-148.
[176] Varentsov I M. 2006. Arrays of simultaneous electromagnetic soundings:design, data processing and analysis. // Electromagnetic Sounding of the Earth's Interior, Vol. 40. Methods in Geochemistry and Geophysics. Amsterdam:Elsevier, 259-273.
[177] Wang H, Wei W B, Jin S, et al. 2014. Removal of magnetotelluric noise based on synchronous time series relationship. Chinese J. Geophys.(in Chinese), 57(2):531-545, doi:10.6038/cjg20140218.
[178] Wang R, Wang M Y, Lu Y L. 2004. CSAMT observation system study in high mountain and steep gorge area. Progress in Geophysics(in Chinese), 19(1):125-130, doi:10.3969/j.issn.1004-2903.2004.01.018.
[179] Wang R, Di Q Y, Wang M Y, et al. 2009. Research on the effect of 3D body between transmitter and receivers on CSAMT response using Integral Equation method. Chinese J. Geophys.(in Chinese), 52(6):1573-1582, doi:10.3969/j.issn.0001-5733.2009.06.019.
[180] Wang S M, Wang J Y. 2004. Application of higher-order statistics in magnetotelluric data processing. Chinese J. Geophys.(in Chinese), 47(5):928-934.
[181] Wang X X, Di Q Y, Xu C. 2014. Characteristics of multiple sources and tensor measurement in CSAMT. Chinese J. Geophys.(in Chinese), 57(2):651-661, doi:10.6038/cjg20140228.
[182] Weaver J T, Agarwal A K, Lilley F E M. 2006. The relationship between the magnetotelluric tensor invariants and the phase tensor of Caldwell, Bibby, and Brown. Exploration Geophysics, 37(3):261-267.
[183] Weckmann U, Magunia A, Ritter O. 2005. Effective noise separation for magnetotelluric single site data processing using a frequency domain selection scheme. Geophysical Journal International, 161(3):635-652.
[184] Weidelt P. 1972. The inverse problem of geomagnetic induction. J. Geophys., 38:257-289.
[185] Weidelt P. 1975. Electromagnetic induction in three-dimensional structures. J. Geophys., 41:85-109.
[186] Weiss C J, Schultz A. 2011. An evaluation of parallelization strategies for low-frequency electromagnetic induction simulators using staggered grid discretizations. American Geophysical Union Fall Meeting Conference Proceedings, Informatics Session, San Francisco.
[187] Xia S B, Min G, Qiu L, et al. 2012. A study of MT method on the prospecting for deep ore deposits. Chinese Journal of Engineering Geophysics(in Chinese), 9(5):531-536.
[188] Xu S Z, Ruan B Y, Zhou H, et al. 1997. Numerical modeling of 3-D terrain effect on MT field. Science in China Series D:Earth Sciences, 40(3):269-275.
[189] Xu Y X, Wang J Y. 2000. Power spectrum estimation for magnetotelluric signal based on continuous wavelet transform. Chinese J. Geophys.(in Chinese), 43(5):677-683.
[190] Xu Z F, Wu X P. 2010. Electromagnetic fields excited by the horizontal electrical dipole on the surface of the ionosphere-homogeneous earth model. Chinese J. Geophys.(in Chinese), 53(10):2497-2506, 10.3969/j.issn.0001-5733.2010.10.023.
[191] Yan J B, Liu G Z. 2007. Like-impulse electromagnetic noise processing based wavelet transform. Coal Geology & Exploration(in Chinese), 35(5):61-65.
[192] Yan S, Chen M S. 1996. Static offset and correction in frequency domain electromagnetic sounding. Oil Geophysical Prospecting(in Chinese), 31(2):238-247.
[193] Yan S, Chen M S. 2004. Shadow and source overprint effects in CSAMT sounding. Oil Geophysical Prospecting(in Chinese), 39(S1):8-10.
[194] Yang S, Bao G S, Zhang S Y. 2001. The correction to aberrant appearance resistivity curve by using impedance phase data in magnetotelluric method. Geology & Prospecting(in Chinese), 37(6):42-45.
[195] Ye Y X, Deng J Z, Li M, et al. 2011. Application status and vistas of electromagnetic methods to deep ore prospecting. Progress in Geophysics(in Chinese), 26(1):327-334, doi:10.3969/j.issn.10042903.2011.01.039.
[196] Yin C C, Piao H R. 1991. A study of the definition of apparent resistivity in electromagnetic sounding. Geophysical & Geochemical Exploration(in Chinese), 15(4):290-299.
[197] Yue R Y, Xu Y X. 2004. Study on electric azimuth anisotropy of controlled source in frequency domain and Near-field effects. Oil Geophysical Prospecting(in Chinese), 39(3):342-347.
[198] Zhan S Q, Qian M P, Feng J J. 2011. The CSAMT near-field correction method for electric field apprarent resistivity forward iterative fitting. Geophysical & Geochemical Exploration(in Chinese), 35(5):663-665.
[199] Zhang Y, Paulson K V. 1997. Enhancement of signal-to-noise ratio in natural-source transient magnetotelluric data with wavelet transform. Pure and Applied Geophysics, 149(2):405-419.
[200] Zhao G Z, Wang L F, Tang J, et al. 2010. New experiments of CSELF electromagnetic method for earthquake monitoring. Chinese J. Geophys.(in Chinese), 53(3):479-486, doi:10.3969/j.issn.0001-5733.2010.03.002.
[201] Zhdanov M S, Lee S K, Yoshioka K. 2006. Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity. Geophysics, 71(6):G333-G345.
[202] Zhdanov M S. 2010. Electromagnetic geophysics:Notes from the past and the road ahead. Geophysics, 75(5):75A49-75A66.
[203] Zhen Q H, Di Q Y, Liu H B. 2013. Key technology study on CSAMT transmitter with excitation control. Chinese J. Geophys.(in Chinese), 56(11):3751-3760, doi:10.6038/cjg20131116.
[204] Zhou H F, Liu C, Shi K F. 2003. A review of study on geothermal resources exploration. Progress in Geophysics(in Chinese), 18(4):656-661, doi:10.3969/j.issn.1004-2903.2003.04.014.
[205] Zhuo X J, Lu J X. 2010. Application and prospect of WFEM to resource exploration and earthquake predication. Ship Science and Technology(in Chinese), 32(6):3-7.
[206] Zhuo X J, Lu J X, Zhao G Z, et al. 2011. The extremely low frequency engineering project using WFEM for underground exploration. Engineering Science(in Chinese), 13(9):42-50.
-
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0