2021/2022年东亚大陆冬季前暖后冷的环流差异及其成因

晏红明, 李刚, 袁媛, 姚愚. 2023. 2021/2022年东亚大陆冬季前暖后冷的环流差异及其成因. 地球物理学报, 66(10): 4026-4044, doi: 10.6038/cjg2022Q0654
引用本文: 晏红明, 李刚, 袁媛, 姚愚. 2023. 2021/2022年东亚大陆冬季前暖后冷的环流差异及其成因. 地球物理学报, 66(10): 4026-4044, doi: 10.6038/cjg2022Q0654
YAN HongMing, LI Gang, YUAN Yuan, YAO Yu. 2023. Atmospheric circulation difference between warm in early winter and cold in late winter of 2021/2022 over East Asia continent and its causes. Chinese Journal of Geophysics (in Chinese), 66(10): 4026-4044, doi: 10.6038/cjg2022Q0654
Citation: YAN HongMing, LI Gang, YUAN Yuan, YAO Yu. 2023. Atmospheric circulation difference between warm in early winter and cold in late winter of 2021/2022 over East Asia continent and its causes. Chinese Journal of Geophysics (in Chinese), 66(10): 4026-4044, doi: 10.6038/cjg2022Q0654

2021/2022年东亚大陆冬季前暖后冷的环流差异及其成因

  • 基金项目:

    国家自然科学基金委-云南联合重点基金(U1902209),云南省自然科学重点基金项目(202201AS070069)资助

详细信息
    作者简介:

    晏红明, 1966年生, 女, 博士, 研究员, 主要从事季风气候研究和短期气候预测.E-mail: yanhongming2013@163.com

  • 中图分类号: P461

Atmospheric circulation difference between warm in early winter and cold in late winter of 2021/2022 over East Asia continent and its causes

  • 2021/2022年冬季东亚大陆地区整体以偏冷为主,气温季节内变化显著,前冬(2021年12月1日—2022年1月26日)气温偏高,后冬(2022年1月28日—2月24日)气温偏低;气温变化的空间差异较大,呈现出显著的北暖南冷特征,尤其在冷时段,南部地区气温偏低幅度比北部地区大1℃左右.本文利用逐日中国观测站点资料和NCEP/NCAR、ERA5等再分析资料分析了2021/2022年冬季东亚大陆前暖后冷的可能原因,发现与冬季气候密切相关的西伯利亚高压、东亚冬季风、平流层极涡、高原高度场、西太平洋副热带高压、东亚高空西风急流、北半球平流层环状模(NAM)等大尺度环流系统均发生了显著的转折性变化,直接导致了东亚大陆冬季前暖后冷的季节变化,但乌拉尔山高压在冷暖时段的变化差异并不明显.另外,赤道中东太平洋冷海温和北大西洋暖海温在后冬的加强变化通过对大气环流的强迫影响,对2022/2021年后冬冷时段冷空气的加强和低温冷事件的发生起到了十分重要的作用.

  • 加载中
  • 图 1 

    2021/2022年冬季欧亚大陆(a)和中国(b)气温距平分布(单位:℃),以及东亚不同区域气温逐日变化(c, 单位:℃)

    Figure 1. 

    Distribution of SAT anomalies (unit: ℃) in Eurasia (a) and China (b), with daily SAT variation (c, unit: ℃) in different regions in winter 2021/2022

    图 2 

    2021/2022年冬季暖(左栏)和冷(右栏)时段欧亚大陆(黑色矩形框标注东亚大陆)和中国气温距平分布(单位:℃)

    Figure 2. 

    SAT anomaliesdistribution in Eurasia (rectangular boxes marked East Asia continent) and China during warm (left) and cold (right) period in winter 2021/2022 (unit: ℃)

    图 3 

    2021/2022年冬季暖(左栏)和冷(右栏)时段高低层大气环流平均场(等值线)及距平场(彩色阴影)

    Figure 3. 

    Mean (contours) and anomalies (colored shadings) of atmospheric circulations at different levels during the warm (left) and cold (right) period in winter of 2021/2022

    图 4 

    2021/2022年冬季SHI逐日变化(a,单位:hPa),以及SHI(b)和UHI(c)分别与东亚大陆不同区域SAT的超前和滞后相关,横坐标正值(负值)表示SHI和UHI滞后(超前)不同区域SAT的天数

    Figure 4. 

    (a) Daily variation of SHI (unit: hPa).The lead-lag correlation between SHI (b)、UHI (c) and the SAT in different regions in winter 2021/2022, with the positive (negative) value on x-axis indicating the days of SHI and UHI lag (lead) SAT

    图 5 

    2021/2022年冬季暖(a)和冷(b)时段500 hPa大气环流异常(高度距平为阴影,单位:gpm;距平风为矢量,单位:m·s-1;垂直速度距平为等值线,单位:10-2Pa·s-1;蓝色和红色矩形框分别为TP-1和TP-2区域),以及TP-1(c)和TP-2指数(d)的逐日变化(单位:gpm)

    Figure 5. 

    Atmospheric circulation anomalies at 500 hPa during warm (a) and cold (b) period (Shadings are GHT, unit: gpm; vectors are wind, unit: m·s-1; contours are vertical velocity, unit: 10-2Pa·s-1; blue and red boxes indicate the region of TP-1 and TP-2, respectively), daily variations of TP-1 (c) and TP-2 (d, units: gpm) in winter 2021/2022

    图 6 

    2021/2022年冬季暖(a)和冷(b)时段200 hPa波通量(矢量, 单位:m2·s-2)和位势高度距平(阴影,单位:gpm)

    Figure 6. 

    200 hPa wave flux (vector, units: m2·s-2) and GHT anomalies (shading, units: gpm) in warm (a) and cold (b) period in winter 2021/2022

    图 7 

    2021/2022冬季东亚冬季风指数逐日变化(上,单位:m·s-1)以及850 hPa距平风场(下,单位:m·s-1)

    Figure 7. 

    Daily variation of EAWM indices (top, unit: m·s-1) and distribution of 850 hPa wind anomalous (bottom, units: m·s-1) in winter 2021/2022

    图 8 

    2021/2022年冬季(a)暖和(b)冷时段200 hPa西风距平(等值线,红色粗实线为气候平均30 m·s-1等值线)和500 hPa温度梯度(阴影,单位:10-6 k·km-1). 1958—2020年冬季200 hPa西风区域平均(30°N—40°N, 110°E— 150°E)指数分别与(c)850 hPa风场(红色矢量为通过0.05显著性检验)、(d)地面气温场和(e)SLP场的相关分布(相关系数为0.26通过95%显著性检验)

    Figure 8. 

    200 hPa westerly wind anomalies (contours, red thick solid line is the climatological westerlies with the speed of 30 m·s-1) and temperature gradient (shading, units: 10-6k·km1) during (a) warm and (b) cold period in winter 2021/2022. Correlation distribution between westerly wind averaged in the region (30°N—40°N, 110°E—150°E) and (c) 850 hPa wind (red vector passed the 0.05 significance test), (d) SAT, (e) SLP in winter from 1958 to 2020, with the correlation coefficients above 0.26 passed the 95% significance test

    图 9 

    冬季逐日NAM指数的时间-高度剖面图(上,单位:106 m2·s-1)以及1981—2020年冬季NAM指数与中国平均气温的逐日相关(下),相关系数大于0.26通过95%的显著性检验

    Figure 9. 

    Time-height section of daily NAM index (top, units: 106 m2·s-1) and the correlation between NAM and temperature (bottom) over China in winter from 1981 to 2020, with the correlation coefficients above 0.26 passed the 95% significance test

    图 10 

    2021/2022年冬季逐日副高西伸脊点(a,单位:°E)和脊线位置(b,单位:°N),阴影为±1个标准差(±1σ)的区域

    Figure 10. 

    Daily variation of west ridge point (a, units: °E) and ridge line position (b, units: °N) of the Western Pacific Subtropical High (WPSH) in winter 2021/2022, with shading for ±1 standard deviation (±1σ)

    图 11 

    冬季(a)东部型La Niña年减去El Niño年的850 hPa风差值场(阴影为通过95%显著性检验的区域,单位:m·s-1)和(b)2021/2022年冬季海温距平分布(单位:℃)

    Figure 11. 

    Difference of 850 hPa wind (unit: m·s-1) between EP La Niña years and El Niño years in winter (shadings indicate the difference exceeding 95% significant test), and (b) distribution of SST anomalous (unit: ℃) in winter 2021/2022

    图 12 

    冬季北大西洋海温暖(左)和冷(右)异常年合成的SAT(上,单位:℃)和SLP(下,单位:hPa)距平场,圆点标注的区域通过95%显著性检验

    Figure 12. 

    Composite fields of SAT (top, units: ℃) and SLP (bottom, units: hPa) anomalies during warm (left) and cold (right) SST years over North Atlantic. Dots indicate the composite exceeding 95% significance test

    表 1 

    不同时段东亚大陆不同区域平均的SAT距平(单位:℃)

    Table 1. 

    SAT anomalies in different regions of East Asia continent in different periods (unit: ℃)

    EA_SAT N_SAT SE_SAT SW_SAT
    2021-12-01—2022-02-28
    (全冬季)
    -0.06 0.54 -0.20 -0.80
    2021-12-01—2022-01-26
    (暖时段)
    1.38 2.10 1.25 0.65
    2022-1-28—2022-02-24
    (冷时段)
    -3.22 -2.77 -3.61 -3.93
    下载: 导出CSV
  •  

    Baldwin M P, Dunkerton T J. 2001. Stratospheric harbingers of anomalous weather regimes. Science, 294(5542): 581-584. doi: 10.1126/science.1063315

     

    Baldwin M P, Stephenson D B, Thompson D W J, et al. 2003. Stratospheric memory and skill of extended-range weather forecasts. Science, 301(5633): 636-640. doi: 10.1126/science.1087143

     

    Baldwin M P, Dunkerton T J. 1999. Propagation of the Arctic Oscillation from the stratosphere to the troposphere. Journal of Geophysical Research: Atmospheres, 104(D24): 30937-30946. doi: 10.1029/1999JD900445

     

    Bretherton C S, Widmann M, Dymnikov V P, et al. 1999. The effective number of spatial degrees of freedom of a time-varying field. Journal of Climate, 12(7): 1990-2009. doi: 10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2

     

    Chen W, Graf H F, Huang R H. 2000. The interannual variabilityof East Asian winter monsoon and its relation to the summermonsoon. Advances in Atmospheric Sciences, 17(1): 48-60. doi: 10.1007/s00376-000-0042-5

     

    Chen W, Lan X Q, Wang L, et al. 2013. The combined effects of the ENSO and the Arctic Oscillation on the winter climate anomalies in East Asia. Chinese Science Bulletin, 58(12): 1355-1362, doi: 10.1007/s11434-012-5654-5.

     

    Chen W, Ding S Y, Feng J, et al. 2018. Progress in the study of impacts of different types of ENSO on the East Asian monsoon and their mechanisms. Chinese Journal of Atmospheric Sciences (in Chinese), 42(3): 640-655.

     

    Cohen J, Screen J A, Furtado J C, et al. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9): 627-637, doi: 10.1038/ngeo2234.

     

    Cohen J, Zhang X, Francis J, et al. 2020. Divergent consensuses onArctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 10(1): 20-29, doi: 10.1038/s41558-019-0662-y.

     

    Francis J A, Vavrus S J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters, 39(6): L06801, doi: 10.1029/2012GL051000.

     

    Gao Y Q, Sun J Q, Li F, et al. 2015. Arctic sea ice and Eurasian climate: A review. Advances in Atmospheric Sciences, 32(1): 92-114, doi: 10.1007/s00376-014-0009-6.

     

    Gong H N, Wang L, Chen W, et al. 2015. Diverse influences of ENSO on the East Asian-western Pacific winter climate tied todifferent ENSO properties in CMIP5 models. Journal of Climate, 28(6): 2187-2202, doi: 10.1175/JCLI-D-14-00405.1.

     

    Gong T, Luo D H. 2017. Ural blocking as an amplifier of the Arctic Sea ice decline in winter. Journal of Climate, 30(7): 2639-2654, doi: 10.1175/JCLI-D-16-0548.1.

     

    Gu S Y, Hou X, Qi J H, et al. 2020. Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming. Earth Planet. Phys. , 4(5): 472-478, doi: 10.26464/epp2020046.

     

    Han R Q, Shi L, Yuan Y. 2021. Analysis on the causes of cold and warm transition in China during the winter of 2020/2021. Meteorological Monthly (in Chinese), 47(7): 880-892.

     

    Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999-2049, doi: 10.1002/qj.3803.

     

    Huang J B, Zhang X D, Zhang Q Y, et al. 2017. Recently amplified arctic warming has contributed to a continual global warming trend. Nature Climate Change, 7(12): 875-879, doi: 10.1038/s41558-017-0009-5.

     

    IPCC. 2013. Climate Change 2013: The physical science basis. //Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

     

    Jia X J, Ge J W. 2017. Interdecadal changes in the relationship between ENSO, EAWM, and the wintertime precipitation over China at the end of the twentieth century. Journal of Climate, 30(6): 1923-1937, doi: 10.1175/JCLI-D-16-0422.1.

     

    Kistler R, Kalnay E, Collins W, et al. 2001. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society, 82(2): 247-268. doi: 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2

     

    Kuang X Y, Zhang Y C, Liu J. 2008. Relationship between subtropical upper tropospheric westerly jet and East Asian winter monsoon. Plateau Meteor. (in Chinese), 27(4): 701-712.

     

    Li C Y. 1990. Interaction between anomalous winter monsoon inEast Asia and El Niño events. Advances in Atmospheric Sciences, 7(1): 36-46, doi: 10.1007/BF02919166.

     

    Lu Q, Rao J, Liang Z Q, et al. 2021. The sudden stratospheric warming in January 2021. Environmental Research Letters, 16(8): 084029, doi: 10.1088/1748-9326/ac12f4.

     

    Luo D H, Xiao Y Q, Yao Y, et al. 2016. Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. Part Ⅰ: Blocking-induced amplification. Journal of Climate, 29(11): 3925-3947. doi: 10.1175/JCLI-D-15-0611.1

     

    Lü Z Z, He S P, Li F, et al. 2019. Impacts of the autumn Arctic sea ice on the intraseasonal reversal of the winter Siberian high. Advances in Atmospheric Sciences, 36(2): 173-188, doi: 10.1007/s00376-017-8089-8.

     

    McCusker K E, Fyfe J C, Sigmond M. 2016. Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-iceloss. Nature Geoscience, 9(11): 838-842, doi: 10.1038/ngeo2820.

     

    Mu M Q, Li C Y. 1999. ENSO signals in the interannual variability of East-Asian winter monsoon. Part Ⅰ: Observed data analyses. Chinese Journal of Atmospheric Sciences (in Chinese), 23(3): 276-285, doi: 10.3878/j.issn.1006-9895.1999.03.03.

     

    Shi J, Qian W H. 2018. Asymmetry of two types of ENSO in the transition between the East Asian winter monsoon and theensuing summer monsoon. Climate Dynamics, 51(9): 3907-3926.

     

    Sun B, Wang H J, Zhou B T. 2019. Climatic condition and synoptic regimes of two intense snowfall events in eastern China and implications for climate variability. Journal of GeophysicalResearch: Atmospheres, 124(2): 926-941, doi: 10.1029/2018JD029921.

     

    Sun B, Wang H J, Wu B W, et al. 2021. Dynamic control of the dominant modes of interannual variability of snowfall frequency in China. Journal of Climate, 34(7): 2777-2790, doi: 10.1175/JCLI-D-20-0705.1.

     

    Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. Journal of the Atmospheric Sciences, 58(6): 608-627. doi: 10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2

     

    Tao S Y, Wei J. 2008. Severe snow and freezing-rain in January2008 in the southern China. Climatic and Environmental Research (in Chinese), 13(4): 337-350.

     

    Taylor P C, Hegyi B M, Boeke R C, et al. 2018. On the increasing importance of air-sea exchanges in a thawing Arctic: A review. Atmosphere, 9(2): 41, doi: 10.3390/atmos9020041.

     

    Tyrlis E, Manzini E, Bader J, et al. 2019. Ural blocking driving extreme Arctic sea ice loss, cold Eurasia, and stratospheric vortex weakening in autumn and early winter 2016-2017. Journal of Geophysical Research: Atmospheres, 124(21): 11313-11329, doi: 10.1029/2019JD031085.

     

    Wang B, Wu R G, Fu X H. 2000. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate. Journal of Climate, 13(9): 1517-1536, doi: 10.1175/1520-0442(2000)013〈1517:PEATHD〉2.0.CO;2.

     

    Wei F Y. 2007. Modern Climate Statistical Diagnosis and PredictionTechnology (in Chinese). 2nd ed. Beijing: Meteorological Press.

     

    Xu P Q, Feng J, Chen W. 2016. Asymmetric role of ENSO in the link between the East Asian winter monsoon and the following summer monsoon. Chinese Journal of Atmospheric Sciences (in Chinese), 40(4): 831-840, doi: 10.3878/j.issn.1006-9895.1509.15192.

     

    Yan H M, Wang L, Zhu Y, et al. 2009. Cause analyses of severe cold and snowy weather formation in Yunnan in early 2008. Plateau Meteor (in Chinese), 28(4): 870-879.

     

    Yan H M, Yuan Y, Tan G R, et al. 2022. Possible impact of sudden stratospheric warming on the intraseasonal reversal of the temperature over East Asia in winter 2020/21. AtmosphericResearch, 268: 106016, doi: 10.1016/j.atmosres.2022.106016.

     

    Yan H S, Li Y, Yan H M, et al. 2002. Influence of SST variations of the tropical ocean on rainfall during the season when dryness turns to wetness in early summer in Yunnan. Journal of Tropical Meteorology (in Chinese), 18(2): 165-172.

     

    Yang S, Lau K M, Kim K M. 2002. Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies. Journal of Climate, 15(3): 306-325. doi: 10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2

     

    Yang X Q, Xie Q, Huang S S. 1992. Numerical experiments of effect of warm SST anomalies in Atlantic ocean on the EastAsian general circulation during the Northern hemisphere summer. Acta Meteorologica Sinica (in Chinese), 50(3): 349-354.

     

    Yuan Y, Yan H M. 2013. Different types of La Niña events and different responses of the tropical atmosphere. Chinese Science Bulletin, 58(3): 406-415, doi: 10.1007/s11434-012-5423-5.

     

    Yuan Y, Shen L L, Yan H M. 2022. Influence of La Niña on the winter temperature in Southwest China on the interdecadal timescale. Chinese Journal of Geophysics (in Chinese), 65(1): 169-185, doi: 10.6038/cjg2022P0267.

     

    Zhang Q Y, Xuan S L, Peng J B. 2008. Relationship between Asian circulation in the middle-high latitude and snowfall over south China during La Niña events. Climatic and Environmental Research (in Chinese), 13(4): 385-394.

     

    Zhang X D, Fu Y F, Han Z, et al. 2022a. Extreme cold events from East Asia to North America in winter 2020/21: Comparisons, causes, and future implications. Advances in Atmospheric Sciences, 39(4): 553-565, doi: 10.1007/s00376-021-1229-1.

     

    Zhang Y X, Si D, Ding Y H, et al. 2022b. Influence of major stratospheric sudden warming on the unprecedented cold wave in East Asia in January 2021. Advances in Atmospheric Sciences, 39(4): 576-590, doi: 10.1007/s00376-022-1318-9.

     

    Zheng F, Liu J P, Fang X H, et al. 2022a. The predictability of ocean environments that contributed to the 2020/21 extreme cold events in China: 2020/21 La Niña and 2020 Arctic sea ice loss. Advances in Atmospheric Sciences, 39(4): 658-672. doi: 10.1007/s00376-021-1130-y.

     

    Zheng F, Yuan Y, Ding Y H, et al. 2022b. The 2020/21 extremely cold winter in China influenced by the synergistic effect of La Niña and warm Arctic. Advances in Atmospheric Sciences, 39(4): 546-552, doi: 10.1007/s00376-021-1033-y.

     

    Zhu Y F. 2008. An index of East Asian winter monsoon applied to description the Chinese mainland winter temperature changes. Acta Meteorologica Sinica (in Chinese), 66(5): 781-788.

     

    Zong H F, Zhang Q Y, Bueh C L, et al. 2008. Numerical simulation ofpossible impacts of Kuroshio and North Atlantic sea surface temperature anormalies on the South China snow disaster in January 2008. Climatic and Environmental Research (in Chinese), 13(4): 491-499.

     

    陈文, 兰晓青, 王林等. 2013. ENSO和北极涛动对东亚冬季气候异常的综合影响. 科学通报, 58(8): 634-641. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201308005.htm

     

    陈文, 丁硕毅, 冯娟等. 2018. 不同类型ENSO对东亚季风的影响和机理研究进展. 大气科学, 42(3): 640-655. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201803013.htm

     

    韩荣青, 石柳, 袁媛. 2021.2020/2021年冬季中国气候冷暖转折成因分析. 气象, 47(7): 880-889. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202107011.htm

     

    况雪源, 张耀存, 刘健. 2008. 对流层上层副热带西风急流与东亚冬季风的关系. 高原气象, 27(4): 701-712. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200804001.htm

     

    穆明权, 李崇银. 1999. 东亚冬季风年际变化的ENSO信息Ⅰ. 观测资料分析. 大气科学, 23(3): 276-285. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199903002.htm

     

    陶诗言, 卫捷. 2008.2008年1月我国南方严重冰雪灾害过程分析. 气候与环境研究, 13(4): 337-350. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804001.htm

     

    魏凤英. 2007. 现代气候统计诊断与预测技术. 2版. 北京: 气象出版社.

     

    徐霈强, 冯娟, 陈文. 2016. ENSO冷暖位相影响东亚冬季风与东亚夏季风联系的非对称性. 大气科学, 40(4): 831-840, doi: 10.3878/j.issn.1006-9895.1509.15192.

     

    晏红明, 王灵, 朱勇等. 2009.2008年初云南低温雨雪冰冻天气的气候成因分析. 高原气象, 28(4): 870-879. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904019.htm

     

    严华生, 李艳, 晏红明等. 2002. 热带海温变化对云南初夏干湿转换季节雨量的影响. 热带气象学报, 18(2): 165-172. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200202008.htm

     

    杨修群, 谢倩, 黄士松. 1992. 大西洋海温异常对东亚夏季大气环流影响的数值试验. 气象学报, 50(3): 349-354. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199203011.htm

     

    袁媛, 申乐琳, 晏红明. 2022. 年代际尺度的拉尼娜事件对中国西南地区冬季气温的影响. 地球物理学报, 65(1): 169-185, doi: 10.6038/cjg2022P0267.

     

    张庆云, 宣守丽, 彭京备. 2008. La Niña年冬季亚洲中高纬环流与我国南方降雪异常关系. 气候与环境研究, 13(4): 385-394. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804004.htm

     

    朱艳峰. 2008. 一个适用于描述中国大陆冬季气温变化的东亚冬季风指数. 气象学报, 66(5): 781-788. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201302010.htm

     

    宗海锋, 张庆云, 布和朝鲁等. 2008. 黑潮和北大西洋海温异常在2008年1月我国南方雪灾中的可能作用的数值模拟. 气候与环境研究, 13(4): 491-499. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804013.htm

  • 加载中

(12)

(1)

计量
  • 文章访问数:  1517
  • PDF下载数:  84
  • 施引文献:  0
出版历程
收稿日期:  2022-08-16
修回日期:  2022-12-21
上线日期:  2023-10-10

目录