北太平洋海温与广西前汛期降水的联系

覃皓. 2023. 北太平洋海温与广西前汛期降水的联系. 地球物理学报, 66(3): 905-919, doi: 10.6038/cjg2022Q0180
引用本文: 覃皓. 2023. 北太平洋海温与广西前汛期降水的联系. 地球物理学报, 66(3): 905-919, doi: 10.6038/cjg2022Q0180
QIN Hao. 2023. The connection between the North Pacific sea temperature and the first rainy season precipitation of Guangxi. Chinese Journal of Geophysics (in Chinese), 66(3): 905-919, doi: 10.6038/cjg2022Q0180
Citation: QIN Hao. 2023. The connection between the North Pacific sea temperature and the first rainy season precipitation of Guangxi. Chinese Journal of Geophysics (in Chinese), 66(3): 905-919, doi: 10.6038/cjg2022Q0180

北太平洋海温与广西前汛期降水的联系

  • 基金项目:

    广西气象科研计划项目(桂气科2022QN08),广西重点研发计划项目(桂科AB21075008),广西壮族自治区气象局短时临近天气预报技术创新团队项目

详细信息
    作者简介:

    覃皓, 男, 硕士, 工程师, 主要从事天气、气候诊断分析及预报研究.E-mail: 289055112@qq.com

  • 中图分类号: P461

The connection between the North Pacific sea temperature and the first rainy season precipitation of Guangxi

  • 利用1979—2019年全国160站逐月降水资料、Hadley中心海温资料、NOAA以及NCEP/NCAR再分析资料,结合相关分析、信息流以及合成分析方法,分析了北太平洋海温异常与广西前汛期降水的同期联系,并初步探讨了前者对后者的影响及可能机制,结果表明:北太平洋关键区海温是广西前汛期降水的显著影响源,海温正位相(负位相)的异常分布在一定程度上导致了广西前汛期降水增多(减少).北太平洋关键区海温变化可以独立于赤道中东太平洋影响前汛期降水,而赤道中东太平洋海温变化可以起到调制作用,增强两者联系.北太平洋为正位相海温异常时,大气为“+-+”的经向三极型位势高度异常响应.与此同时,海温异常激发了向下游中高纬传播的Rossby波列,引起东亚沿岸位势高度正异常和反气旋环流异常.在上述机制下,贝加尔湖高压脊和东亚大槽均显著增强,使得中高纬冷空气更易南下.赤道中东太平洋海温的调制作用体现在对中低纬环流的影响.关键区海温正位相对应于赤道中东太平洋海温偏暖,后者引起局地异常上升运动,减弱Walker环流进而导致赤道西太平洋出现下沉异常,抑制了对流活动,在西北太平洋强迫出异常反气旋,使得副高加强西伸.副高的增强西伸增强了暖湿气流输送,这一方面有利于广西一带的水汽输送,水汽通量辐合增强;另一方面有利于冷暖空气在广西交汇,对流不稳定增强,促进上升运动,最终导致降水增多.北太平洋为负位相时上述异常形势相反,导致降水减少.

  • 加载中
  • 图 1 

    海温与广西前汛期站点降水指数IGX的相关系数分布(打点区域表示达到0.1的显著性信度水平)

    Figure 1. 

    Distribution of correlation coefficient between the index IGX and SST (the dotted areas indicate the values passing 0.1 significance level)

    图 2 

    海温对广西前汛期站点降水指数IGX的信息流分布(单位:nat·a-1,打点区域表示达到0.1的显著性信度水平)

    Figure 2. 

    Distribution of information flow from SST to the index IGX (units: nat·a-1, the dotted areas indicate the values passing 0.1 significance level)

    图 3 

    广西前汛期降水指数IGX(灰色实线)和海温指数INP(黑色实线)的标准化序列及9年滑动平均(浅蓝和深蓝虚线分别为IGXINP的平滑曲线)

    Figure 3. 

    Standardized time series for the IGX (gray line) and the INP (black line), 9-year running averages (light blue and dark blue dashed line indicate the smoothed of IGX and INP respectively)

    图 4 

    图 2,但为ERA5降水对(a)INP和(b)Nino3.4指数

    Figure 4. 

    Same as Fig. 2, but for ERA5 precipitation to the index (a) INP and (b) Nino3.4

    图 5 

    广西前汛期500 hPa位势高度与INP的相关系数(a)以及与INP(b)和Nino3.4指数(c)的偏相关系数分布(打点区域表示达到0.1的显著性信度水平)

    Figure 5. 

    Distribution of correlation coefficient of 500 hPa geopotential height with the INP (a), partial correlations of 500 hPa geopotential height with the INP (b) and Nino3.4 index (c) during Guangxi FRS (dotted areas indicate the values passing 0.1 significance level)

    图 6 

    广西前汛期850 hPa风场与INP(a)和Nino3.4指数(b)的偏相关分布

    Figure 6. 

    Distribution of partial correlations of 850 hPa wind with the INP (a) and Nino3.4 index (b) during Guangxi FRS

    图 7 

    NP独立(a,b)和NP普通(c,d)配置下海温正位相年(a,c)和负位相年(b,d)广西前汛期SST异常合成分布(单位:℃,打点区域表示达到0.1的显著性信度水平)

    Figure 7. 

    Composite distribution of SST anomaly in positive SST (a, c) and negative SST (b, d) years of NP independent (a, b) and NP normal (c, d) configurations during Guangxi FRS (unit: ℃, the dotted areas indicate the values passing 0.1 significance level)

    图 8 

    NP独立配置下海温正、负位相年广西前汛期(a)500 hPa位势高度(色标,单位:gpm)和850 hPa风场(打点和矢量表示达到0.1的显著性信度水平),(b) 500 hPa波作用通量(箭矢,单位:m-2·s-2)及其散度(色标,单位:10-6 m·s-2)的差值合成分布

    Figure 8. 

    Composite difference of (a) 500 hPa geopotential height (contours, unit: gpm) and 850 hPa wind (dotted areas and vectors indicate the values passing 0.1 significance level), (b) 500 hPa wave-activity fluxes (arrows, unit: m-2·s-2) and its divergence (shaded, unit: 10-6m·s-2) between positive and negative SST phase years during Guangxi FRS in the configurations of NP independent

    图 9 

    NP独立配置下海温正、负位相年广西前汛期沿105°E—120°E平均垂直剖面上温度(色标,单位:K)和经向环流(箭矢)的差值合成分布(打点区域表示达到0.1的显著性信度水平)

    Figure 9. 

    Composite difference of vertical cross sections of temperature (shaded, unit: K) and meridional circulation (arrows) averaged along 105°E—120°E between positive and negative SST phase years during Guangxi FRS in the configurations of NP independent (the dotted areas indicate the values passing 0.1 significance level)

    图 10 

    NP普通配置下海温正、负位相年广西前汛期(a)5°S—5°N平均垂直剖面上垂直速度(色标,单位:10-2Pa·s-1)和纬向环流(箭矢),(b)OLR(色标,单位:W·m-2)和850 hPa风场(箭矢,单位:m·s-1;实线和虚线分别为正、负位相海温异常年副高5880 gpm特征等值线)的差值合成分布(只显示达到0.1显著性信度水平的矢量)

    Figure 10. 

    Composite difference of (a) vertical cross sections of vertical velocity (shaded, unit: 10-2 Pa·s-1) and zonal circulation (arrows) averaged along 5°S—5°N, (b) OLR (shaded, unit: W·m-2) and 850 hPa wind field (arrows, unit: m·s-1; solid and dashed line indicate the positive and negative SST years composite 5880 gpm isohypse respectively) between positive and negative SST phase years during Guangxi FRS in the configurations of NP normal (only show the vector passing 0.1 significance level)

    图 11 

    NP独立(a)和NP普通(b)配置下海温正、负位相年广西前汛期1000~300 hPa整层水汽通量(箭矢,单位:kg·m-1·s-1)和水汽通量散度(色标,单位:g·m-2·s-1)的差值合成分布(矢量以及打点区域表示达到0.1的显著性信度水平)

    Figure 11. 

    Composite difference of water vapor flux (arrows, unit: kg·m-1·s-1) and water vapor flux divergence (shaded, unit: g·m-2·s-1) integrated from 1000 hPa to 300 hPa between positive and negative SST phase years during Guangxi FRS in the configurations of (a) NP independent and (b) NP normal (vectors and the dotted areas indicate the values passing 0.1 significance level)

    图 12 

    NP普通配置下海温正、负位相年广西前汛期沿105°E—120°E平均垂直剖面上对流不稳定度(色标,单位:10-3 K·hPa-1)和垂直速度(等值虚线,单位:10-2 Pa·s-1,只显示小于-0.1,间隔0.4)的差值合成分布(打点区域表示达到0.1的显著性信度水平)

    Figure 12. 

    Composite difference of vertical cross sections of convective instability (shaded, unit: 10-3 K·hPa-1) and vertical velocity (dash contour, unit: 10-2 Pa·s-1, only show the values less than -0.1, interval is 0.4) averaged along 105°E—120°E between positive and negative SST phase years during Guangxi FRS in the configurations of NP normal (the dotted areas indicate the values passing 0.1 significance level)

    图 13 

    NP独立(a)和NP普通(b)配置下海温正、负位相年广西前汛期ERA5降水的(单位:mm)的差值合成分布(打点区域表示达到0.1的显著性信度水平)

    Figure 13. 

    Composite difference of ERA5 precipitation (unit: mm) between positive and negative SST phase years during Guangxi FRS in the configurations of (a) NP independent and (b) NP normal (dotted areas indicate the values passing 0.1 significance level)

    表 1 

    NP普通年和NP独立年的位相配置分布

    Table 1. 

    Distribution of the phase configurations of NP normal and NP independent years

    位相 NP普通年份 NP独立年份
    1992、1993、1996、1997、2005、2014、2015、2016、2019 1993、1996、2005、2014
    1980、1985、1988、1999、2000、2006、2008、2012 1980、2006、2012
    下载: 导出CSV
  •  

    Beck H E, Pan M, Roy T, et al. 2019. Daily evaluation of 26 precipitation datasets using Stage-Ⅳ gauge-radar data for the CONUS. Hydrology and Earth System Sciences, 23(1): 207-224, doi: 10.5194/hess-23-207-2019.

     

    Cai W J, Wu L X, Lengaigne M, et al. 2019. Pantropical climate interactions. Science, 363(6430): eaav4236, doi: 10.1126/science.aav4236.

     

    Chen L J, Zhao J H, Gu W, et al. 2019. Advances of research and application on major rainy seasons in China. Journal of Applied Meteorological Science (in Chinese), 30(4): 385-400, doi: 10.11898/1001-7313.20190401.

     

    Deser C, Timlin M S. 1997. Atmosphere-ocean interaction on weekly timescales in the North Atlantic and Pacific. Journal of Climate, 10(3): 393-408, doi: 10.1175/1520-0442(1997)010<0393:AOIOWT>2.0.CO;2.

     

    Ding R Q, Li J P, Tseng Y H, et al. 2015. The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. Journal of Geophysical Research: Atmospheres, 120(1): 27-45, doi: 10.1002/2014JD022221.

     

    Ding R Q, Li J P, Tseng Y H, et al. 2018. Influences of the North Pacific victoria mode on the South China Sea summer monsoon. Atmosphere, 9(6): 229, doi: 10.3390/atmos9060229.

     

    Fan L L, Xu J J, Li J J. 2020. Differences in Pre-Flood season rainfall in South China between spring and summer El Niño events. Atmosphere-ocean, 58(2): 144-156, doi: 10.1080/07055900.2020.1752139.

     

    Fang J B, Yang X Q. 2016. Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system. Climate Dynamics, 47(5-6): 1989-2007, doi: 10.1007/s00382-015-2946-x.

     

    GillA E. 1980. Some simple solutions for heat-induced tropical circulation. Quarterly Journal of the Royal Meteorological Society, 106(449): 447-462, doi: 10.1002/qj.49710644905.

     

    Gong Z Q, Sun C, Li J P, et al. 2020. An inter-basin teleconnection from the North Atlantic to the subarctic North Pacific at multidecadal time scales. Climate Dynamics, 54(1-2): 807-822, doi: 10.1007/s00382-019-05031-5.

     

    Gu W, Wang L, Hu Z Z, et al. 2018. Interannual variations of the first rainy season precipitation over South China. Journal of Climate, 31(2): 623-640, doi: 10.1175/JCLI-D-17-0284.1.

     

    He W Y, Sun B, Wang H J. 2021. Dominant modes of interannual variability in atmospheric water vapor content over East Asia during winter and their associated mechanisms. Advances in Atmospheric Sciences, 38(10): 1706-1722, doi: 10.1007/s00376-021-0014-5.

     

    Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999-2049, doi: 10.1002/qj.3803.

     

    Hong C C, Chang T C, Hsu H H. 2014. Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s. Journal of Geophysical Research: Atmospheres, 119(7): 3715-3722, doi: 10.1002/2013JD021394.

     

    Jin D C, Huo L W. 2018. Influence of tropical Atlantic sea surface temperature anomalies on the East Asian summer monsoon. Quarterly Journal of the Royal Meteorological Society, 144(714): 1490-1500, doi: 10.1002/qj.3296.

     

    Keenlyside N S, Latif M. 2007. Understanding equatorial Atlantic interannual variability. Journal of Climate, 20(1): 131-142, doi: 10.1175/JCLI3992.1.

     

    Lan T, Huo L W, Wang J, et al. 2021. Extreme drought event and its causes in Southwest China in summer 2011. Transactions of Atmospheric Sciences (in Chinese), 44(6): 927-937, doi: 10.13878/j.cnki.dqkxxb.20190801007.

     

    Li C Y, Wang L Q, Gu W. 2011. Interannual time-scale relationship between Mongolia High and SST anomaly in the North Pacific in winter. Chinese Journal of Atmospheric Sciences (in Chinese), 35(2): 193-200.

     

    Li H, He S P, Fan K, et al. 2021. Recent intensified influence of the winter North Pacific Sea surface temperature on the Mei-Yu withdrawal date. Journal of Climate, 34(10): 3869-3887, doi: 10.1175/JCLI-D-19-0768.1.

     

    Li H, Sun B, Wang H J, et al. 2022. Joint effects of three oceans on the 2020 super Mei-Yu. Atmospheric and Oceanic Science Letters, 15(1): 100127, doi: 10.1016/j.aosl.2021.100127.

     

    Li H Y, Sun J R, Chen Z G, et al. 2019. Influences of two types of El Niño events on percipitation anomalies in the April-June rainy season over South China. Journal of Tropical Meteorology (in Chinese), 35(4): 491-503, doi: 10.16032/j.issn.1004-4965.2019.045.

     

    Li J P, Zheng F, Sun C, et al. 2019. Pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate: a review. Advances in Atmospheric Sciences, 36(9): 902-921, doi: 10.1007/s00376-019-8236-5.

     

    Li L P, Zhou L, Yu Z X. 2018. Interdecadal anomaly of rainfall during the first rainy season in South China and its possible causes. Transactions of Atmospheric Sciences (in Chinese), 41(2): 186-197, doi: 10.13878/j.cnki.dqkxxb.20160224001.

     

    Li W J, Ren H C, Zuo J Q, et al. 2018. Early summer southern China rainfall variability and its oceanic drivers. Climate Dynamics, 50(11-12): 4691-4705, doi: 10.1007/s00382-017-3898-0.

     

    Li Z X, Yu Y Q, Deng W T, et al. 2019. Variation characteristics of North Atlantic tri-polar sea surface temperature in spring and its relationship with NAO and ENSO. Journal of the Meteorological Sciences (in Chinese), 39(6): 721-730, doi: 10.3969/2018jms.0105.

     

    Liang X S. 2008. Information flow within stochastic dynamical systems. Physical Review E, 78(3): 031113, doi: 10.1103/PhysRevE.78.031113.

     

    Liang X S. 2014. Unraveling the cause-effect relation between time series. Physical Review E, 90(5): 052150, doi: 10.1103/PhysRevE.90.052150.

     

    Liang X S. 2021. Normalized multivariate time series causality analysis and causal graph reconstruction. Entropy, 23(6): 679. doi: 10.3390/e23060679.

     

    Liu T, Li J P, Li Y J, et al. 2018. Influence of the May Southern annular mode on the South China Sea summer monsoon. Climate Dynamics, 51(11-12): 4095-4107, doi: 10.1007/s00382-017-3753-3.

     

    Liu T T, Zhu X F, Guo R, et al. 2022. Applicability of ERA5 reanalysis of precipitation data in China. Arid Land Geography (in Chinese), 45(1): 66-79.

     

    Namias J. 1963. Large-scale air-sea interactions over the North Pacific from summer 1962 through the subsequent winter. Journal of Geophysical Research: Atmospheres, 68(22): 6171-6186, doi: 10.1029/JZ068i022p06171.

     

    Nogueira M. 2020. Inter-comparison of ERA-5, ERA-Interim and GPCP rainfall over the last 40 years: process-based analysis of systematic and random differences. Journal of Hydrology, 583: 124632, doi: 10.1016/j.jhydrol.2020.124632.

     

    Polo I, Martin-Rey M, Rodriguez-Fonseca B, et al. 2015. Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Climate Dynamics, 44(1-2): 115-131, doi: 10.1007/s00382-014-2354-7.

     

    Qiang X M, Yang X Q. 2008. Onset and end of the first rainy season in South China. Chinese Journal of Geophysics (in Chinese), 51(5): 1333-1345, doi: 10.3321/j.issn:0001-5733.2008.05.007.

     

    Qin H, Wu L Q, He H. 2023. Impact of the summer Tropical Atlantic sea temperature on the first rainy season precipitation in South China. Chinese Journal of Atmospheric Sciences (in Chinese), doi: 10.3878/j.issn.1006-9895.2108.21108.

     

    Sampe T, Nakamura H, Goto A, et al. 2010. Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. Journal of Climate, 23(7): 1793-1814, doi: 10.1175/2009JCLI3163.1.

     

    Sun B, Wang H J, Zhou B T. 2019. Interdecadal variation of the relationship between East Asian water vapor transport and tropical Pacific Sea surface temperatures during January and associated mechanisms. Journal of Climate, 32(21): 7575-7594, doi: 10.1175/JCLI-D-19-0290.1.

     

    Sun X G, Tao L F, Yang X Q. 2018. The influence of oceanic stochastic forcing on the atmospheric response to midlatitude North Pacific SST anomalies. Geophysical Research Letters, 45(17): 9297-9304, doi: 10.1029/2018GL078860.

     

    Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. Journal of the Atmospheric Sciences, 58(6): 608-627, doi: 10.1175/1520-0469(2001)058〈0608:AFOAPI〉2.0.CO;2.

     

    Tan G R, Sun Z B, Min J Z, et al. 2009. Spatial modes of the summer SST anomaly in the North Pacific and its relationship with the circulation anomaly over East Asia. Chinese Journal of Atmospheric Sciences (in Chinese), 33(5): 1038-1046, doi: 10.3878/j.issn.1006-9895.2009.05.14.

     

    Tanimoto Y, Nakamura H, Kagimoto T, et al. 2003. An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux. Journal of Geophysical Research: Atmospheres, 108(C10): 3304, doi: 10.1029/2002JC001750.

     

    Tao L F, Yang X Q, Fang J B, et al. 2020. PDO-related wintertime atmospheric anomalies over the midlatitude North Pacific: local versus remote SST forcing. Journal of Climate, 33(16): 6989-7010, doi: 10.1175/JCLI-D-19-0143.1.

     

    Wang B, Wu R G, Li T. 2003. Atmosphere-warm ocean interaction and its impacts on Asian-Australian Monsoon variation. Journal of Climate, 16(8): 1195-1211, doi: 10.1175/1520-0442(2003)16〈1195:AOIAII〉2.0.CO;2.

     

    Wang F, Cao J, Tang H P, et al. 2014. Impact of SST in Northern Pacific ocean on flood season precipitation in Guizhou. Plateau Meteorology (in Chinese), 33(4): 925-936, doi: 10.7522/j.issn.1000-0534.2013.00090.

     

    Wang H P, Shi C H, Guo D, et al. 2020. The interdependent relationship between the intensity of the South Asia High and the vertical velocity in its adjacent region. Chinese Journal of Geophysics (in Chinese), 63(9): 3240-3250, doi: 10.6038/cjg2020N0279.

     

    Wang Y R, Zhou J H, Yang X, et al. 2021. Applicability evaluation and deviation correction of reanalysis precipitation data: case of middle and lower reaches of Changjiang River. Yangtze River (in Chinese), 52(9): 93-100, doi: 10.16232/j.cnki.1001-4179.2021.09.015.

     

    Wu H Y, Yang S, Jiang X W. 2015. Anomalous onset date of the first rainy season in South China and its relationship with the variation of the atmospheric circulation and SST. Acta Meteorologica Sinica (in Chinese), 73(2): 319-330, doi: 10.11676/qxxb2015.046.

     

    Wu H Y, Wu Y. 2018. Possible impacts of El Niño events of different types and intensity on precipitation in the subsequent first rainy season in South China. Chinese Journal of Atmospheric Sciences (in Chinese), 42(5): 1081-1095, doi: 10.3878/j.issn.1006-9895.1711.17178.

     

    Wu Z W, Jiang Z H, He J H. 2006. The comparison analysis of flood and drought features among the first flood period in South China, Meiyu period in the Yangtze river and the Huaihe river valleys and rainy season in North China in the last 50 years. Chinese Journal of Atmospheric Sciences (in Chinese), 30(3): 391-401. doi: 10.3878/j.issn.1006-9895.2006.03.03

     

    Xiao H X, Zhang F, Miao L J, et al. 2020. Long-term trends in Arctic surface temperature and potential causality over the last 100 years. Climate Dynamics, 55(5-6): 1443-1456, doi: 10.1007/s00382-020-05330-2.

     

    Xu L R, Deng L Y. 1989. Ahe teleconnection between ENSO and a few sea-atmosphere factors for Asian mid-low latitudes and its relation to the South China rainfall. Journal of Tropical Meteorology (in Chinese), 5(3): 235-244.

     

    Zhang J, Zhou T J, Yu R C, et al. 2009. Atmospheric water vapor transport and corresponding typical anomalous spring rainfall patterns in China. Chinese Journal of Atmospheric Sciences (in Chinese), 33(1): 121-134, doi: 10.3878/j.issn.1006-9895.2009.01.11.

     

    Zhang L Y, Xu H M, Shi N, et al. 2018. Impact of the North Pacific subtropical sea surface temperature front on El Niño-Southern Oscillation. International Journal of Climatology, 38(S1): e729-e740, doi: 10.1002/joc.5402.

     

    Zhang R, Fang J B, Yang X Q. 2020. What kinds of atmospheric anomalies drive wintertime North Pacific basin-scale subtropical oceanic front intensity variation?. Journal of Climate, 33(16): 7011-7026, doi: 10.1175/JCLI-D-19-0973.1.

     

    Zhang R H, Sumi A, Kimoto M. 1999. A diagnostic study of the impact of El Niño on the precipitation in China. Advances in Atmospheric Sciences, 16(2): 229-241, doi: 10.1007/BF02973084.

     

    Zhang W, Dong X, Xue F. 2020. Intraseasonal variations of the East Asian Summer Monsoon in El Niño developing years and La Niña years under different phases of the Pacific Decadal Oscillation. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 390-406, doi: 10.3878/j.issn.1006-9895.1910.18269.

     

    Zhang Y C, Liang X S. 2022. The causal role of South China Sea on the Pacific-North American teleconnection pattern. Climate Dynamics, 59(5-6): 1815-1832, doi: 10.1007/s00382-021-06070-7.

     

    Zhao S, Li J P, Sun C. 2016. Decadal variability in the occurrence of wintertime haze in central eastern China tied to the Pacific Decadal Oscillation. Scientific Reports, 6: 27424, doi: 10.1038/srep27424.

     

    陈丽娟, 赵俊虎, 顾薇等. 2019. 汛期我国主要雨季进程成因及预测应用进展. 应用气象学报, 30(4): 385-400. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201904001.htm

     

    蓝天, 霍利微, 王冀等. 2021. 2011年夏季西南极端干旱事件及其成因. 大气科学学报, 44(6): 927-937, doi: 10.13878/j.cnki.dqkxxb.20190801007.

     

    李崇银, 王力群, 顾薇. 2011. 冬季蒙古高压与北太平洋海温异常的年际尺度关系. 大气科学, 35(2): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201102002.htm

     

    李海燕, 孙家仁, 谌志刚等. 2019. 两类El Nino事件对华南前汛期降水异常的影响. 热带气象学报, 35(4): 491-503, doi: 10.16032/j.issn.1004-4965.2019.045.

     

    李丽平, 周林, 俞子闲. 2018. 华南前汛期降水的年代际异常特征及其成因. 大气科学学报, 41(2): 186-197, doi: 10.13878/j.cnki.dqkxxb.20160224001.

     

    李忠贤, 于怡秋, 邓伟涛等. 2019. 春季北大西洋三极型海温异常变化及其与NAO和ENSO的联系. 气象科学, 39(6): 721-730, doi: 10.3969/2018jms.0105.

     

    刘婷婷, 朱秀芳, 郭锐等. 2022. ERA5再分析降水数据在中国的适用性分析. 干旱区地理, 45(1): 66-79. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202201008.htm

     

    强学民, 杨修群. 2008. 华南前汛期开始和结束日期的划分. 地球物理学报, 51(5): 1333-1345, doi: 10.3321/j.issn:0001-5733.2008.05.007. http://www.geophy.cn/article/id/cjg_1327

     

    覃皓, 伍丽泉, 何慧. 2023. 夏季热带大西洋海温变化对华南前汛期降水的影响. 大气科学, doi: 10.3878/j.issn.1006-9895.2108.21108.

     

    谭桂容, 孙照渤, 闵锦忠等. 2009. 北太平洋海温异常的空间模态及其与东亚环流异常的关系. 大气科学, 33(5): 1038-1046, doi: 10.3878/j.issn.1006-9895.2009.05.14.

     

    王芬, 曹杰, 唐浩鹏等. 2014. 前期北太平洋海温异常对贵州夏季降水的影响. 高原气象, 33(4): 925-936, doi: 10.7522/j.issn.1000-0534.2013.00090.

     

    王惠平, 施春华, 郭栋等. 2020. 南亚高压强度与邻近地区垂直速度的相互依赖关系. 地球物理学报, 63(9): 3240-3250, doi: 10.6038/cjg2020N0279. http://www.geophy.cn/article/doi/10.6038/cjg2020N0279

     

    王彧蓉, 周建中, 杨鑫等. 2021. 再分析降水资料的适用性评估与偏差校正——以长江中下游地区为例. 人民长江, 52(9): 93-100, doi: 10.16232/j.cnki.1001-4179.2021.09.015.

     

    伍红雨, 杨崧, 蒋兴文. 2015. 华南前汛期开始日期异常与大气环流和海温变化的关系. 气象学报, 73(2): 319-330, doi: 10.11676/qxxb2015.046.

     

    伍红雨, 吴遥. 2018. 不同类型和强度的厄尔尼诺事件对次年华南前汛期降水的可能影响. 大气科学, 42(5): 1081-1095, doi: 10.3878/j.issn.1006-9895.1711.17178.

     

    吴志伟, 江志红, 何金海. 2006. 近50年华南前汛期降水、江淮梅雨和华北雨季旱涝特征对比分析. 大气科学, 30(3): 391-401. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200603002.htm

     

    徐蕾如, 邓良焱. 1989. ENSO与亚洲中低纬若干海气因子的遥相关及与华南降水的关系. 热带气象, 5(3): 235-244. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX198903005.htm

     

    张洁, 周天军, 宇如聪等. 2009. 中国春季典型降水异常及相联系的大气水汽输送. 大气科学, 33(1): 121-134, doi: 10.3878/j.issn.1006-9895.2009.01.11.

     

    张雯, 董啸, 薛峰. 2020. 不同PDO位相下El Niño发展年和La Niña年东亚夏季风的季节内变化. 大气科学, 44(2): 390-406, doi: 10.3878/j.issn.1006-9895.1910.18269.

  • 加载中

(13)

(1)

计量
  • 文章访问数:  2619
  • PDF下载数:  91
  • 施引文献:  0
出版历程
收稿日期:  2022-03-18
修回日期:  2022-07-11
上线日期:  2023-03-10

目录