基于三维数字岩心的介观尺度流弹性响应数值模拟

孙超, 张怀, 唐跟阳, 王尚旭, 贺艳晓, 潘冬明. 2023. 基于三维数字岩心的介观尺度流弹性响应数值模拟. 地球物理学报, 66(8): 3444-3462, doi: 10.6038/cjg2023Q0733
引用本文: 孙超, 张怀, 唐跟阳, 王尚旭, 贺艳晓, 潘冬明. 2023. 基于三维数字岩心的介观尺度流弹性响应数值模拟. 地球物理学报, 66(8): 3444-3462, doi: 10.6038/cjg2023Q0733
SUN Chao, ZHANG Huai, TANG GenYang, WANG ShangXu, HE YanXiao, PAN DongMing. 2023. 3D digital core applied to numerically predict elastic response caused by mesoscopic flow. Chinese Journal of Geophysics (in Chinese), 66(8): 3444-3462, doi: 10.6038/cjg2023Q0733
Citation: SUN Chao, ZHANG Huai, TANG GenYang, WANG ShangXu, HE YanXiao, PAN DongMing. 2023. 3D digital core applied to numerically predict elastic response caused by mesoscopic flow. Chinese Journal of Geophysics (in Chinese), 66(8): 3444-3462, doi: 10.6038/cjg2023Q0733

基于三维数字岩心的介观尺度流弹性响应数值模拟

  • 基金项目:

    国家自然科学基金项目(42030810、42104111、41930425、41725017、41804104);国家重点研发计划(2020YFA0713400);油气资源与探测国家重点实验室开放课题(PRP/open2207);徐州市基础研究计划——青年科技人才项目(KC22018)资助

详细信息
    作者简介:

    孙超, 男, 1988年生, 中国矿业大学副教授.E-mail: sunchao@cumt.edu.cn

    通讯作者: 张怀, 男, 1973年生, 中国科学院大学教授.E-mail: hzhang@ucas.ac.cn
  • 中图分类号: P631

3D digital core applied to numerically predict elastic response caused by mesoscopic flow

More Information
  • 复杂介质油气藏的地震波频散和衰减是地球物理勘探中油气特征反演与解释的重要属性.介观尺度处于微观孔隙尺度与宏观地震波场尺度之间,地震波穿过饱和流体岩石时激励流体发生频散和衰减,导致地震波能量损耗,被称为介观波致流.其形成机理、特征和规律一直是勘探地球物理学和岩石物理学等领域共同关心的科学问题,也是研究的前沿和难点之一.本文首先选取印第安纳灰岩(Indiana)作为研究对象,通过排水方式饱和样品,使用CT方法研究介观流体分布特征和规律;为研究其机理,引入Biot孔弹性理论构建三维(3D)数值模型,模拟部分饱和岩石的纵波速度频散和衰减特征.经对比,数值模拟结果与实验结果匹配,表明Biot孔弹性理论可以用来描述介观波致流的物理机理.本文发展的岩石物理实验结合数值模拟的研究手段为今后研究介观流衰减和频散的特征和规律提供了理论和方法借鉴.

  • 加载中
  • 图 1 

    带有红色矩形扫描区域的印第安纳灰岩

    Figure 1. 

    Indiana limestone with a scanning area of the red rectangle

    图 2 

    使用蒸发排水法饱和样品的过程

    Figure 2. 

    The process of saturating the sample using the drainage method

    图 3 

    CT扫描图像去噪及空间位置校正

    Figure 3. 

    CT scanning results in denoising and the corresponding space registration

    图 4 

    (a) 三维孔隙度分布;(b) 采用排水方法饱和,含水饱和度88%样品内的三维流体分布;(c) 图(a)的YZ剖面;(d) 图(b)的YZ剖面;(e) 孔隙度随着XY平面的变化(沿着Z轴)

    Figure 4. 

    (a) 3D porosity distribution; (b) 3D fluid distribution for water saturation of 88% using drainage method; (c) YZ section of figure (a); (d) YZ section of figure (b); (e) Porosity versus XY slice (along Z-axial)

    图 5 

    (a) 网格粗化; (b) 自适应细化网格; (c) 纵波边界条件位置; (d) 应力位置

    Figure 5. 

    (a) Mesh coarsening; (b) Adaptive mesh refinement; (c) Location for P-wave modulus boundary condition; (d) Location for stress loading

    图 6 

    纵波模量平均方差随测试样品数量NR的变化

    Figure 6. 

    Average variance of P-wave modulus as a function of the total number of realizations NR

    图 7 

    纵波模量平均方差随体积比的变化

    Figure 7. 

    Average variance of P-wave modulus versus different volume ratios

    图 8 

    三维归一化流体压力分布

    Figure 8. 

    3D normalized fluid-pressure distribution

    图 9 

    三维归一化流体压力分布的YZ方向横截面

    Figure 9. 

    YZ section of the 3D normalized fluid-pressure distribution

    图 10 

    3D样品中心横截面的归一化流体分布

    Figure 10. 

    Normalized fluid distribution for the center cross-section of the 3D sample

    图 11 

    (a) 纵波模量和(b)纵波衰减随频率变化的曲线

    Figure 11. 

    Variation of (a) P-wave modulus and (b) P-wave′s attenuation with frequency

    表 1 

    Indiana石灰岩、水和空气的特性

    Table 1. 

    Properties of the Indiana limestone, water, and air

    属性 Indiana灰岩 空气
    孔隙度ϕ(%) 10.8 - -
    长度L(mm) 81.0 - -
    直径D(mm) 39.7 - -
    渗透率κ(m2) 2×10-17 - -
    排水体积模量Kd(GPa) 24 2.25 1×10-4
    排水剪切模量μ(GPa) 15.2 0 0
    密度ρ(kg·m-3) 2369.2 1000 1
    黏度η(Pa·s) - 10-3 2×10-5
    注:干燥纵波模量为5 MPa差压(即围压减去孔压)下所测.
    Note:The dry P-wave modulus is measured under 5 MPa differential pressure (i.e., confining pressure minus pore pressure).
    下载: 导出CSV

    表 2 

    岩石物理参数符号定义

    Table 2. 

    Definitions of symbols used for the petrophysical parameters

    符号 物理意义 取值
    κ 渗透率 约0~1000×10-14 m2
    η 流体黏度 约10-3cP~2000 cP
    ϕ 孔隙度 <60%
    μ 干燥样品剪切模量 <300 GPa
    Kd 干燥样品体积模量 Ks
    Ks 基质颗粒体积模量 5~300 GPa
    ρb 饱和流体的岩石密度 (1-ϕ)ρs+ϕρf
    ρs 基质密度 1000~3700 kg·m-3
    ρf 流体密度 0~2000 kg·m-3
    Kf 流体体积模量 10-5~5 GPa
    ρc 复密度
    τ 孔隙迂曲度 0~1
    λm Lamé常数
    α Biot-Willis系数
    M 流体模量
    Sg 含气饱和度 0~1
    Sw 含水饱和度 0~1
    注:表中取值范围参考了《岩石物理手册》中常见储层岩石及流体的取值范围(Mavko et al., 2009),为虚数单位.
    Note:The range of values refers to the values of the reservoir rocks and fluids in the Rock Physics Handbook (Mavko et al., 2009), is the imaginary unit.
    下载: 导出CSV
  •  

    Arns C H, Knackstedt M A, Pinczewski M V, et al. 2001. Accurate estimation of transport properties from microtomographic images. Geophysical Research Letters, 28(17): 3361-3364, doi: 10.1029/2001GL012987.

     

    Arns C H, Knackstedt M A, Pinczewski W V, et al. 2002. Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment. Geophysics, 67(5): 1396-1405, doi: 10.1190/1.1512785.

     

    Arns C H, Bauget F, Limaye A, et al. 2005. Pore-scale characterization of carbonates using X-ray microtomography. SPE Journal, 10(4): 475-484, doi: 10.2118/90368-PA.

     

    Ba J, Zhao J G, Carcione J M, et al. 2016. Compressional wave dispersion due to rock matrix stiffening by clay squirt flow. Geophysical Research Letters, 43(12): 6186-6195, doi. org/10.1002/2016GL069312. doi: 10.1002/2016GL069312

     

    Biot M A. 1941. General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2): 155-164, doi: 10.1063/1.1712886.

     

    Biot M A. 1956. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ. Higher frequency range. The Journal of the Acoustical Society of America, 28(2): 179-191, doi: 10.1121/1.1908241.

     

    Biot M A. 1962. Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33(4): 1482-1498, doi: 10.1063/1.1728759.

     

    Borgomano J V M, Pimienta L X, Fortin J, et al. 2019. Seismic dispersion and attenuation in fluid-saturated carbonate rocks: effect of microstructure and pressure. Journal of Geophysical Research: Solid Earth, 124(12): 12498-12522, doi: 10.1029/2019JB018434.

     

    Borgomano J V M, Gallagher A, Sun C, et al. 2020. An apparatus to measure elastic dispersion and attenuation using hydrostatic-and axial-stress oscillations under undrained conditions. Review of Scientific Instruments, 91(3): 034502, doi: 10.1063/1.5136329.

     

    Buades A, Coll B, Morel J M. 2005. A non-local algorithm for image denoising. //2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). San Diego, CA, USA: IEEE, 60-65, doi: 10.1109/CVPR.2005.38.

     

    Cadoret T, Mavko G, Zinszner B. 1998. Fluid distribution effect on sonic attenuation in partially saturated limestones. Geophysics, 63(1): 154-160, doi: 10.1190/1.1444308.

     

    Chapman S, Borgomano J V M, Quintal B, et al. 2021. Seismic wave attenuation and dispersion due to partial fluid saturation: direct measurements and numerical simulations based on X-ray CT. Journal of Geophysical Research: Solid Earth, 126(4): e2021JB021643, doi: 10.1029/2021JB021643.

     

    Debye P, Bueche A M. 1949. Scattering by an inhomogeneous solid. Journal of Applied Physics, 20(6): 518-525, doi: 10.1063/1.1698419.

     

    Deng J X, Zhou H, Wang H, et al. 2015. The influence of pore structure in reservoir sandstone on dispersion properties of elastic waves. Chinese Journal of Geophysics (in Chinese), 58(9): 3389-3400, doi: 10.6038/cjg20150931.

     

    Du T W, Wu G C, Wu J L. 2018. Dispersion and attenuation of P wave in a periodic layered-model with Patchy saturation for three-phase. Chinese Journal of Geophysics (in Chinese), 61(11): 4584-4597, doi: 10.6038/cjg2018L0449.

     

    Dutta N C, Odé H. 1979. Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model)-Part Ⅱ: Results. Geophysics, 44(11): 1789-1805, doi: 10.1190/1.1440939.

     

    Fossum A F, Senseny P E, Pfeifle T W, et al. 1995. Experimental determination of probability distributions for parameters of a salem limestone cap plasticity model. Mechanics of Materials, 21(2): 119-137, doi: 10.1016/0167-6636(95)00002-X.

     

    Fredrich J T, Greaves K H, Martin J W. 1993. Pore geometry and transport properties of Fontainebleau sandstone. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7): 691-697, doi: 10.1016/0148-9062(93)90007-Z.

     

    Gassmann F. 1951. Vber die elastizität poröser medien: Vier der Natur. Gesellshaft in Zürich, 96: 1-23.

     

    Gastal E S L, Oliveira M M. 2012. Adaptive manifolds for real-time high-dimensional filtering. ACM Transactions on Graphics, 31(4): 1-33, doi: 10.1145/2185520.2185529.

     

    Golab A N, Knackstedt M A, Averdunk H, et al. 2010. 3D porosity and mineralogy characterization in tight gas sandstones. The Leading Edge, 29(12): 1476-1483, doi: 10.1190/1.3525363.

     

    Guarracino L, Santos J E. 2004. Stochastic modeling of variably saturated transient flow in fractal porous media. Mathematical Geology, 36(2): 217-238, doi: 10.1023/B:MATG.0000020471.33189.8c.

     

    Guo M Q, Ba J, Ma R P, et al. 2018. P-wave velocity dispersion and attenuation in fluid-saturated tight sandstones: Characteristics analysis based on a double double-porosity structure model description. Chinese Journal of Geophysics (in Chinese), 61(3): 1053-1068, doi: 10.6038/cjg2018L0678.

     

    Gurevich B, Makarynska D, de Paula O B, et al. 2010. A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks. Geophysics, 75(6): N109-N120, doi. org/10.1190/1.3509782.

     

    Hart D J, Wang H F. 1995. Laboratory measurements of a complete set of poroelastic moduli for Berea sandstone and Indiana limestone. Journal of Geophysical Research: Solid Earth, 100(B9): 17741-17751, doi: 10.1029/95JB01242.

     

    Helle H B, Pham N H, Carcione J M. 2003. Velocity and attenuation in partially saturated rocks: Poroelastic numerical experiments. Geophysical Prospecting, 51(6): 551-566, doi: 10.1046/j.1365-2478.2003.00393.x.

     

    Hill R. 1963. Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11(5): 357-372, doi: 10.1016/0022-5096(63)90036-X.

     

    Ji Y, Baud P, Vajdova V, et al. 2012. Characterization of pore geometry of Indiana limestone in relation to mechanical compaction. Oil & Gas Science and Technology-Revue d'IFP Energies Nouvelles, 67(5): 753-775, doi: 10.2516/ogst/2012051.

     

    Jing H M, Yu X W, Zhang H, et al. 2010. Numerical analysis on thermal conductivity of poly-mineral rock. Earthquake Science, 23(3): 223-232, doi: 10.1007/s11589-010-0718-6.

     

    Jing H M, Zhang H, Li H, et al. 2011. Parallel numerical analysis on the rheology of the martian ice-rock mixture. Journal of Earth Science, 22(2): 176-181, doi: 10.1007/s12583-011-0170-0.

     

    Johnson D L. 2001. Theory of frequency dependent acoustics in patchy-saturated porous media. The Journal of the Acoustical Society of America, 110(2): 682-694, doi: 10.1121/1.1381021.

     

    Lebedev M, Toms-Stewart J, Clennell B, et al. 2009. Direct laboratory observation of patchy saturation and its effects on ultrasonic velocities. The Leading Edge, 28(1): 24-27, doi: 10.1190/1.3064142.

     

    Lin Q Y, Bijeljic B, Rieke H, et al. 2017. Visualization and quantification of capillary drainage in the pore space of laminated sandstone by a porous plate method using differential imaging X-ray microtomography. Water Resources Research, 53(8): 7457-7468, doi: 10.1002/2017WR021083.

     

    Lin Q Y, Bijeljic B, Raeini A Q, et al. 2021. Drainage capillary pressure distribution and fluid displacement in a heterogeneous laminated sandstone. Geophysical Research Letters, 48(14): e2021GL093604, doi: 10.1029/2021GL093604.

     

    Liu J, Ma J W, Yang H Z. 2009. Research on dispersion and attenuation of P wave in periodic layered-model with patchy saturation. Chinese Journal of Geophysics (in Chinese), 52(11): 2879-2885, doi: 10.3969/j.issn.0001-5733.2009.11.023.

     

    Liu J, Sarout J, Zhang M C, et al. 2018. Computational upscaling of Drucker-Prager plasticity from micro-CT images of synthetic porous rock. Geophysical Journal International, 212(1): 151-163, doi: 10.1093/gji/ggx409.

     

    Madonna C, Almqvist B S G, Saenger E H. 2012. Digital rock physics: numerical prediction of pressure-dependent ultrasonic velocities using micro-CT imaging. Geophysical Journal International, 189(3): 1475-1482, doi: 10.1111/j.1365-246X.2012.05437.x.

     

    Masschaele B, Dierick M, Loo D V, et al. 2013. HECTOR: A 240kV micro-CT setup optimized for research. Journal of Physics: Conference Series, 463(1): 012012, doi: 10.1088/1742-6596/463/1/012012.

     

    Mavko G, Jizba D. 1991. Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics, 56(12): 1940-1949, doi: 10.1190/1.1443005.

     

    Mavko G, Mukerji T, Dvorkin J. 2009. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. 2nd ed. Cambridge: Cambridge University Press.

     

    Michalopoulos L P, Triandafilidis G E. 1976. Influence of water on hardness, strength and compressibility of rock. Environmental and Engineering Geoscience, xiii(1): 1-22, doi: 10.2113/gseegeosci.xiii.1.1.

     

    Müller T M, Gurevich B. 2005. A first-order statistical smoothing approximation for the coherent wave field in random porous media. The Journal of the Acoustical Society of America, 117(4): 1796-1805, doi: 10.1121/1.1871754.

     

    Müller T M, Toms-Stewart J, Wenzlau F. 2008. Velocity-saturation relation for partially saturated rocks with fractal pore fluid distribution. Geophysical Research Letters, 35(9): L09306, doi: 10.1029/2007GL033074.

     

    Müller T M, Gurevich B, Lebedev M. 2010. Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks-A review. Geophysics, 75(5): 75A147-75A164, doi: 10.1190/1.3463417.

     

    Ouyang F, Zhao J G, Li Z, et al. 2021. Modeling velocity dispersion and attenuation using pore structure characteristics of rock. Chinese Journal of Geophysics (in Chinese), 64(3): 1034-1047, doi: 10.6038/cjg2021O0355.

     

    Qi Q M, Müller T M, Gurevich B, et al. 2014. Quantifying the effect of capillarity on attenuation and dispersion in patchy-saturated rocks. Geophysics, 79(5): WB35-WB50, doi: 10.1190/geo2013-0425.1.

     

    Ren S B, Han T C, Fu L Y. 2020. Theoretical and experimental study of P-wave attenuation in partially saturated sandstones under different pressures. Chinese Journal of Geophysics (in Chinese), 63(7): 2722-2736, doi: 10.6038/cjg2020O0021.

     

    Rubino J G, Ravazzoli C L, Santos J E. 2009. Equivalent viscoelastic solids for heterogeneous fluid-saturated porous rocks. Geophysics, 74(1): N1-N13, doi: 10.1190/1.3008544.

     

    Rubino J G, Holliger K. 2012. Seismic attenuation and velocity dispersion in heterogeneous partially saturated porous rocks. Geophysical Journal International, 188(3): 1088-1102, doi: 10.1111/j.1365-246X.2011.05291.x.

     

    Rubino J G, Holliger K. 2013. Research note: Seismic attenuation due to wave-induced fluid flow at microscopic and mesoscopic scales. Geophysical Prospecting, 61(4): 882-889, doi: 10.1111/1365-2478.12009.

     

    Rubino J G, Caspari E, Müller T M, et al. 2016. Numerical upscaling in 2-D heterogeneous poroelastic rocks: Anisotropic attenuation and dispersion of seismic waves. Journal of Geophysical Research: Solid Earth, 121(9): 6698-6721, doi: 10.1002/2016JB013165.

     

    Saenger E H, Enzmann F, Keehm Y, et al. 2011. Digital rock physics: Effect of fluid viscosity on effective elastic properties. Journal of Applied Geophysics, 74(4): 236-241, doi: 10.1016/j.jappgeo.2011.06.001.

     

    Sain R, Mukerji T, Mavko G. 2014. How computational rock-physics tools can be used to simulate geologic processes, understand pore-scale heterogeneity, and refine theoretical models. The Leading Edge, 33(3): 324-334, doi: 10.1190/tle33030324.1.

     

    Saxena N, Mavko G. 2016. Estimating elastic moduli of rocks from thin sections: Digital rock study of 3D properties from 2D images. Computers & Geosciences, 88: 9-21, doi: 10.1016/j.cageo.2015.12.008.

     

    Shen Y Q, Yang D H. 2004. The Green function of two-phase media BISQ model. Chinese Journal of Geophysics (in Chinese), 47(1): 101-105, doi: 10.3321/j.issn:0001-5733.2004.01.015.

     

    Sun C, Tang G, Fortin J, et al. 2019. Fluid effect on the observation of two-attenuation peaks for a reservoir sandstone saturated with brine. //81st EAGE Conference and Exhibition 2019. London, UK: European Association of Geoscientists & Engineers, 1-5, doi: 10.3997/2214-4609.201901035.

     

    Sun C, Fortin J, Borgomano J V M, et al. 2022. Influence of fluid distribution on seismic dispersion and attenuation in partially saturated limestone. Journal of Geophysical Research: Solid Earth, 127(5): e2021JB023867, doi: 10.1029/2021JB023867.

     

    Sun W T, Ba J, Müller T M, et al. 2015. Comparison of P-wave attenuation models of wave-induced flow. Geophysical Prospecting, 63(2): 378-390, doi: 10.1111/1365-2478.12196.

     

    Teja A S, Rice P. 1981. Generalized corresponding states method for the viscosities of liquid mixtures. Industrial & Engineering Chemistry Fundamentals, 20(1): 77-81, doi: 10.1021/i100001a015.

     

    Toms J, Müller T M, Gurevich B. 2007. Seismic attenuation in porous rocks with random patchy saturation. Geophysical Prospecting, 55(5): 671-678, doi: 10.1111/j.1365-2478.2007.00644.x.

     

    Vajdova V, Baud P, Wong T F. 2004. Compaction, dilatancy, and failure in porous carbonate rocks. Journal of Geophysical Research: Solid Earth, 109(B5): B05204, doi: 10.1029/2003JB002508.

     

    Wang S, Ruspini L C, Øren P E, et al. 2022. Anchoring multi-scale models to micron-scale imaging of multiphase flow in rocks. Water Resources Research, 58(1): e2021WR030870, doi: 10.1029/2021WR030870.

     

    White J E. 1975. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 40(2): 224-232, doi: 10.1190/1.1440520.

     

    White J E, Mihailova N, Lyakhovitsky F. 1975. Low-frequency seismic waves in fluid-saturated layered rocks. The Journal of the Acoustical Society of America, 57(S1): S30-S30, doi: 10.1121/1.1995164.

     

    Winkler K, Nur A. 1979. Pore fluids and seismic attenuation in rocks. Geophysical Research Letters, 6(1): 1-4, doi: 10.1029/GL006i001p00001.

     

    Wood A B. 1946. A Textbook of Sound. 2nd ed. New York: MacMillan.

     

    Yang D H, Zhang Z J. 2000. Effects of the Biot and the squirt-flow coupling interaction on anisotropic elastic waves. Chinese Science Bulletin, 45(23): 2130-2138, doi: 10.1007/BF02886316.

     

    Yang D H, Zhang Z J. 2002. Poroelastic wave equation including the Biot/squirt mechanism and the solid/fluid coupling anisotropy. Wave Motion, 35(3): 223-245, doi: 10.1016/S0165-2125(01)00106-8.

     

    Yang K D, Yang D H, Wang S Q. 2002. Wave-field simulation based on the Biot-Squirt equation. Chinese Journal of Geophysics (in Chinese), 45(6): 853-861.

     

    Yang K D, Song G J, Li J S. 2011. FCT compact difference simulation of wave propagation based on the Biot and the squirt-flow coupling interaction. Chinese Journal of Geophysics (in Chinese), 54(5): 1348-1357, doi: 10.3969/j.issn.0001-5733.2011.05.024.

     

    Yang L, Yang D H, Nie J X. 2014. Wave dispersion and attenuation in viscoelastic isotropic media containing multiphase flow and its application. Science China Physics, Mechanics & Astronomy, 57(6): 1068-1077, doi: 10.1007/s11433-014-5435-z.

     

    Yao Q L, Han D H, Yan F Y, et al. 2015. Modeling attenuation and dispersion in porous heterogeneous rocks with dynamic fluid modulus. Geophysics, 80(3): D183-D194, doi: 10.1190/geo2013-0410.1.

     

    Zhang B Y, Yang D H, He X J. 2022. A unified model including non-Darcy flow and viscoelastic mechanisms in tight rocks. Geophysics, 87(4): MR189-MR199, doi. org/10.1190/geo2021-0697.1. doi: 10.1190/geo2021-0697.1

     

    Zhang L, Ba J, Carcione J M. 2021. Wave propagation in infinituple-porosity media. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB021266, doi. org/10.1029/2020JB021266.

     

    Zhang L, Ba J, Carcione J M, et al. 2022. Seismic wave propagation in partially saturated rocks with a fractal distribution of fluid-patch size. Journal of Geophysical Research: Solid Earth, 127(2): e2021JB023809, doi: 10.1029/2021JB023809.

     

    Zhao L M, Tang G Y, Wang S X, et al. 2019. Laboratory study of oil saturation and oil/water substitution effects on a sandstone's modulus dispersion and attenuation. Exploration Geophysics, 50(3): 324-335, doi: 10.1080/08123985.2019.1610327.

     

    Zhao L X, Wang Y R, Yao Q L, et al. 2021. Extended Gassmann equation with dynamic volumetric strain: Modeling wave dispersion and attenuation of heterogeneous porous rocks. Geophysics, 86(3): MR149-MR164, doi: 10.1190/geo2020-0395.1.

     

    Zhu W, Baud P, Wong T F. 2010. Micromechanics of cataclastic pore collapse in limestone. Journal of Geophysical Research: Solid Earth, 115(B4): B04405, doi: 10.1029/2009JB006610.

     

    Zhu W, Zhao L X, Wang Y R. 2021. Digital rock-based broadband dynamic stress-strain simulation method and its applications for characterization of dispersion and attenuation signatures of tight cracked rock. Chinese Journal of Geophysics (in Chinese), 64(6): 2086-2096, doi: 10.6038/cjg2021O0302.

     

    Zimmerman R W. 1991. Compressibility of Sandstones. Amsterdam: Elsevier.

     

    Zong Z Y, Song L X, Yin X Y. 2022. Seismic wave velocity attenuation and dispersion in the patchy saturated medium with complex pores and cracks. Chinese Journal of Geophysics (in Chinese), 65(10): 4012-4027, doi: 10.6038/cjg2022P0322.

     

    包宏帅, 韩同城, 符力耘. 2021. 基于二维图像的数字岩心电导率计算方法研究. 地球物理学报, 64(5): 1733-1744, doi: 10.6038/cjg2021O0434. http://www.geophy.cn/article/doi/10.6038/cjg2021O0434

     

    邓继新, 周浩, 王欢等. 2015. 基于储层砂岩微观孔隙结构特征的弹性波频散响应分析. 地球物理学报, 58(9): 3389-3400, doi: 10.6038/cjg20150931. http://www.geophy.cn/article/doi/10.6038/cjg20150931

     

    杜天玮, 吴国忱, 吴建鲁. 2018. 三相周期成层Patchy模型中地震波频散和衰减. 地球物理学报, 61(11): 4584-4597, doi: 10.6038/cjg2018L0449. http://www.geophy.cn/article/doi/10.6038/cjg2018L0449

     

    郭梦秋, 巴晶, 马汝鹏等. 2018. 含流体致密砂岩的纵波频散及衰减: 基于双重双重孔隙结构模型描述的特征分析. 地球物理学报, 61(3): 1053-1068, doi: 10.6038/cjg2018L0678. http://www.geophy.cn/article/doi/10.6038/cjg2018L0678

     

    刘炯, 马坚伟, 杨慧珠. 2009. 周期成层Patchy模型中纵波的频散和衰减研究. 地球物理学报, 52(11): 2879-2885, doi: 10.3969/j.issn.0001-5733.2009.11.023. http://www.geophy.cn/article/doi/10.3969/j.issn.0001-5733.2009.11.023

     

    欧阳芳, 赵建国, 李智等. 2021. 基于微观孔隙结构特征的速度频散和衰减模拟. 地球物理学报, 64(3): 1034-1047, doi: 10.6038/cjg2021O0355. http://www.geophy.cn/article/doi/10.6038/cjg2021O0355

     

    任舒波, 韩同城, 符力耘. 2020. 不同压力下部分饱和砂岩纵波衰减的理论及实验研究. 地球物理学报, 63(7): 2722-2736, doi: 10.6038/cjg2020O0021. http://www.geophy.cn/article/doi/10.6038/cjg2020O0021

     

    申义庆, 杨顶辉. 2004. 基于BISQ模型的双相介质位移场Green函数. 地球物理学报, 47(1): 101-105, doi: 10.3321/j.issn:0001-5733.2004.01.015. http://www.geophy.cn/article/id/cjg_1566

     

    杨宽德, 杨顶辉, 王书强. 2002. 基于Biot-Squirt方程的波场模拟. 地球物理学报, 45(6): 853-861. http://www.geophy.cn/article/id/cjg_3547

     

    杨宽德, 宋国杰, 李静爽. 2011. Biot流动和喷射流动耦合作用下波传播的FCT紧致差分模拟. 地球物理学报, 54(5): 1348-1357, doi: 10.3969/j.issn.0001-5733.2011.05.024. http://www.geophy.cn/article/doi/10.3969/j.issn.0001-5733.2011.05.024

     

    朱伟, 赵峦啸, 王一戎. 2021. 数字岩心宽频带动态应力应变模拟方法及其对含裂隙致密岩石频散和衰减特征的表征. 地球物理学报, 64(6): 2086-2096, doi: 10.6038/cjg2021O0302. http://www.geophy.cn/article/doi/10.6038/cjg2021O0302

     

    宗兆云, 宋琉璇, 印兴耀. 2022. 含流体复杂孔隙介质地震波衰减与频散. 地球物理学报, 65(10): 4012-4027, doi:10.6038/cjg2022P0322. http://www.geophy.cn/article/doi/10.6038/cjg2022P0322

  • 加载中

(11)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-09-12
修回日期:  2023-01-05
上线日期:  2023-08-10

目录