Identification of evasive manoeuvres in traffic interactions and conflicts

Author:

Johnsson CarlORCID,Laureshyn AliakseiORCID

Abstract

The study presents a simple and easy to implement method for detection of the evasive action start in traffic interactions. The method is based on comparison of the studied trajectory with a reference set of ‘unhindered’ trajectories, interpreting the start of evasive action as the moment when no more similarities can be found. The suggested algorithm performs well for primary interactions when road users arrive in an unhindered state. It fails, however, in case of secondary interactions. Explorative application of the method on a large dataset of normal and conflict traffic situations concludes that traffic conflicts occur more frequently in secondary interactions, presumably due to higher cognitive load on the involved road users. Despite the limitations, the method can be used both for the safety studies based on traffic conflicts and for more general quantification and visualisation of the road user behaviour.

Publisher

Dept. of Technology & Society, Faculty of Engineering, LTH, Lund University

Reference36 articles.

1. Allen, B. L., B. T. Shin, P. J. Cooper (1978), ‘Analysis of traffic conflicts and collisions’, Transportation Research Record: Journal of the Transportation Research Board, 667, 67–74, https://onlinepubs.trb.org/Onlinepubs/trr/1978/667/667-009.pdf, accessed 3 September 2022.

2. Bagdadi, O. (2013), ‘Assessing safety critical braking events in naturalistic driving studies’, Transportation Research Part F: Traffic Psychology and Behaviour, 16, 117–126, https://doi.org/10.1016/j.trf.2012.08.006.

3. Chang, A., N. Saunier, A. Laureshyn (2017), ‘Proactive methods for road safety analysis. White paper’ (SAE International), Technical Paper WP-0005, https://www.sae.org/publications/technical-papers/content/wp-0005, accessed 3 September 2022.

4. Fisher, R. A. (1932), Statistical methods for research workers (Edinburgh: Oliver & Boyd).

5. Gettman, D., L. Pu, T. Sayed, S. Shelby (2008), ‘Surrogate Safety Assessment Model and Validation’ (McLean, Virginia: U. S. Department of Transportation, Federal Highway Administration), FHWA-HRT-08-051, https://www.fhwa.dot.gov/publications/research/safety/08051/08051.pdf, accessed 3 September 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3