Modeling the dynamic semantics of a computer program

Author:

Iklassova K.1,Kozhakhmetova R.1

Affiliation:

1. Manash Kozybayev North Kazakhstan university, Petropavlovsk, Republic of Kazakhstan

Abstract

In this paper, two approaches are used to construct the dynamic semantics of computer programs: the first is the representation of mathematical models of computational processes generated by a computer program in the form of a discrete transformer; the second is the representation of the mathematical model of a computer program in terms of functional grammars. The study focuses on the computational process generated by a computer program. Application of the discrete transducers concept to describe computational processes allows us to obtain a mathematical model or dynamic semantics of a program, which is a composition of two discrete systems B and C. In this case, component A is a control component (a model of the program block diagram), and component B is a model of the program memory. The decomposition of a program into two components B and B is convenient when studying the process of modelling a computational process. This is due to the fact that the prospects of searching for invariants in critical nodes of a programme for mathematical proof of correctness of a computer programme are opened. The comparative analysis of the two approaches leads to the theorem on the regularity of the representation of a function generated by a programme within the framework of functional grammar.

Publisher

Ural State University of Economics

Reference11 articles.

1. Mohsin A., Janjua N.K., Islam M.S, Babar M.A. SAM-SoS: A stochastic software architecture modeling and verification approach for complex system-of-systems. IEEE Access. 2020. Vol. 8. Pp. 177580–177603. DOI: https://doi.org/10.1109/ACCESS.2020.3025934.

2. Zabotkina V.I., Boyarskaya E.L. K voprosu o dinamicheskoj konceptual’noj semantike: modelirovanie struktury koncepta preodolenie [The issue of dynamic conceptual semantics revisited: frame modelling of overcoming]. Kognitivnye issledovaniya yazyka. 2020. No. 3(42). Pp. 128–134. EDN: https://www.elibrary.ru/aafphd. (In Russ.)

3. Chen N., Geng S., Li Y. Modeling and verification of uncertain cyber-physical system based on decision processes. Mathematics. 2023. Vol. 11, iss. 19. Art. no. 4122. DOI: https://doi. org/10.3390/math11194122.

4. Granichin O., Uzhva D., Volkovich Z. Cluster flows and multiagent technology // Mathematics. 2021. Vol. 9, iss. 1. Art. no. 22. DOI: https://doi.org/10.3390/math9010022.

5. Kolesnikov A.V., Rumovskaya S.B., Yasinskij E.V. Intellektualizaciya operativno-tekhnologicheskogo upravleniya regional’noj elektroenergetikoj metodami kognitivnyh gibridnyh intellektual’nyh sistem. Chast’ 4 [Intellectualization of operational and technological control of regional electric power by cognitive hybrid intelligent systems. Part 4]. Vestnik Baltijskogo federal’nogo universiteta im. I. Kanta. Seriya: Fiziko-matematicheskie i tekhnicheskie nauki. 2021. No. 4. pp. 49–75. EDN: OLYTHB. (In Russ.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3