Author:
Rojita Chanu TH.,Timothy Kom ST.,Ratnabala Devi O.
Abstract
In this paper, we study cyclic and β-constacyclic codes over the ?nite commutative ring R = F2[u,v]/<u2,v3 ? v,uv,vu> with ? = (1+u),(1+u+v+v2) and (1+v+v2). We establish a Gray map from R to F42 and prove that the Gray image of a cyclic code is a quasi-cyclic code of index 4. It is also shown that the Gray image of β-constacyclic code overRis either β-equivalent, β-equivalent or β-equivalent to a quasi-cyclic code of length 4n and index 4 over F2 when ? = (1 + u),(1 + u + v + v2) and (1 + v + v2), respectively.
Publisher
Informatics Publishing Limited
Reference14 articles.
1. T. Abualrub and I. Siap, Cyclic codes over the ring Z2 + uZ2 and Z2 + uZ2 + u2Z2, Des. Codes Crypt., 42 (3)(2007), 273–287.
2. T. Bag, H. Islam, O. Prakash and A. K. Upadhyay, A note on constacyclic and skew constacyclic codes over the ring Zp[u,v]/hu2 − u,v2 − v,uv − vui, J. Algebra Comb. Discrete Appl., 6 (3)(2018), 163–172.
3. A. Bayram and I. Siap, Structure of codes over the ring Z3[v]/hv3 −vi, Appl. Algebra Engrg. Commun. Comput., 24 (2013), 369–386.
4. Y. Cengellenmis, On the cyclic codes over F3+vF3, Int. J. Algebra, 4 (6)(2010), 253-259.
5. A. Dertli and Y. Cengellenmis, On (1+u)-Cyclic and cyclic codes over F2 +uF2 +vF2, Eur. J. Pure Appl. Math., 9 (3)(2016), 305–313.