Documentación gráfica del patrimonio arqueológico mediante LiDAR sobre UAV. Análisis experimental de los parámetros óptimos de vuelo

Author:

Rodriguez-Bulnes JesúsORCID,Benavides-Lopez José AntonioORCID,Martín Civantos José MaríaORCID

Abstract

La introducción de nuevas tecnologías ha abierto nuevas vías metodológicas y enfoques teóricos de gran interés para la investigación arqueológica y la conservación del patrimonio histórico. Este estudio profundiza en las ventajas de los sistemas LiDAR en el análisis del paisaje y elementos arqueológicos en zonas con gran vegetación. La obtención de documentación gráfica tridimensional de la realidad con fines topográficos, patrimoniales, arquitectónicos o industriales se ha visto revolucionada en la última década por la aplicación de vehículos aéreos no tripulados (UAV), convirtiéndose en una herramienta básica en el trabajo diario de los técnicos, permitiendo documentar grandes superficies de terreno o lugares inaccesibles con una gran eficiencia y con mejores resultados si cabe que con los métodos clásicos. Los UAV, comúnmente conocidos como drones permiten aerotransportar distintos tipos de sensores, siempre condicionados por su dimensión y peso. Estas limitaciones hacían que principalmente se utilizarán sensores pasivos de reducido tamaño: es decir cámaras RGB, multiespectrales o infrarrojos. La constante evolución del sector ha permitido que los sensores activos de teledetección LiDAR (Light Detection and Ranging) estén disponibles a nivel consumidor abriendo nuevas posibilidades que la fotogrametría multiimagen no permite, como la adquisición de información con reducida luz ambiental, zonas sombreadas o la adquisición de datos bajo la vegetación. El objetivo de este estudio es realizar un análisis comparado de la representación tridimensional del terreno y de los elementos estructurales presentes en paisajes con densa vegetación, analizando en base a los parámetros de vuelo: altura y velocidad, el índice de penetración del pulso LiDAR aerotransportado para el registro de las características arqueológicas. El estudio también ofrece una serie de novedades metodológicas basadas en los datos extraídos y las especificidades de este tipo de sensores. En este punto podemos plantear la pregunta ¿qué diferencia existe entre la obtención de topografía con fines técnicos a arqueológicos? En topografía se establece la precisión del modelo digital en función de la escala de trabajo y se genera una superficie reglada, en la que el resultado final sufre un proceso de generalización que suaviza las formas del terreno con el fin de obtener curvas de nivel que representen el terreno y sean interpretables fácilmente en función de la escala. Por el contrario, en arqueológica se buscan indicios de actividad antrópica, por lo que se persigue una mayor definición de las formas, un mayor número de puntos, y aplicar unos sistemas de visualización específicos. Para nuestro propósito de estudio, hemos planteado dos escenarios bien distintos: uno ideal (sin ningún tipo de vegetación ni obstáculo y con topografía horizontal, en concreto una pista de aterrizaje de un campo de modelismo y por otro lado, uno muy complejo con densa vegetación de pinar y fuertes pendientes realizando una serie de vuelos de con diferente altura, (entre 70 y 120 m) y con distintas velocidades de avance de la aeronave (entre 5 y 10 m/s). Finalmente hemos realizado un estudio estadístico de los resultados que nos permitan determinarlos parámetros óptimos para los fines deseados, planteando un esquema y flujo de trabajo óptimos.

Publisher

Universitat Politecnica de Valencia

Reference13 articles.

1. Antonio Esquivel, J., Antonio Benavides, J., & Javier Esquivel, F. (2012). El análisis de la forma de onda de los escáneres terrestres aplicados a la investigación arqueológica The waveform analysis of terrestrial laser scanning applied to archaeological research. 413-424.

2. Castilla-Agredano, B., Checa, A. M., Nieto, M. G., Luis Domínguez Jiménez, J., Luis Dominguez-Jiménez, J., González-Nieto, M., Moreno-Alcaide, M., & Monterroso-Checa, A. (2021). Preparing rural heritage for another kind of Covid pandemic: heritage digitalization strategies in the Alto Guadiato Valley and Subbetica of Cordoba, Spain. 195-208. https://doi.org/10.2423/i22394303v11n1p194

3. CHCNav. (2021). CHCNAV AlphaAir 450 User Manual Version 2.0.

4. Fernández-Lozano, J., & Sanz-Ablanedo, E. (2021). Unraveling the morphological constraints on roman gold mining hydraulic infrastructure in nw spain. A uav-derived photogrammetric and multispectral approach. Remote Sensing, 13(2), 1-24. https://doi.org/10.3390/rs13020291

5. Horn, S. W., & Ford, A. (2019). Beyond the magic wand: methodological developments and results from integrated Lidar survey at the ancient Maya Center El Pilar. Science and Technology of Archaeological Research, 5(2), 164-178. https://doi.org/10.1080/20548923.2019.1700452

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3