Imaging of gasoline-like sprays with planar laser-induced exciplex fluorescence using a stereoscopic imaging system

Author:

Andersson Mats1,Yamaguchi Akichika2,Wang Hua3

Affiliation:

1. Department of Applied Mechanics, Chalmers University of Technology, 41296 Göteborg

2. DENSO Corporation, 1-1, Showa-cho, Kariya-shi, Aichi-ken, 448-8661

3. Dantec Dynamics A/S, Tonsbakken 16-18, DK-2740 Skovlunde

Abstract

The role of the fuel injection systems in direct injected gasoline engines is to achieve a suitable fuel vapordistribution, homogeneous or with some degree of stratification, while avoiding unwanted effects such as wall wetting. Planar laser-induced exciplex fluorescence (PLIEF) is a method suitable for the characterization of such sprays since it enables separate imaging of both vapor and liquid phase of fuel simultaneously. In this study a hollow-cone spray generated with an outwards-opening piezo-actuated injector is investigated, with the injector mounted in a constant volume, constant pressure spray chamber with quartz windows, providing a controlled steady test environment. N-hexane is used as surrogate fuel of gasoline, together with exciplex-forming fluorescence tracers - fluorobenzene and diethylmethylamine. Fluorescence excitation is carried out with a parallel laser sheet from the fourth harmonic light of a Nd:YAG-laser (266 nm) running at 10 Hz. Exciplex fluorescence images from liquid phase and monomer fluorescence spray images from vapor phase can be acquired by a single UV-sensitive CMOS camera equipped with a stereoscope having filters selectively transmitting monomer fluorescence at 295 nm and exciplex fluorescence at 355 nm. Since the fluorescence is strongly quenched by oxygen, most of the experiments were carried out in a nitrogen atmosphere.Images were recorded during the injection and at various time steps after the end of the injection, and typical spray development for this type of injector was observed, i.e. the fuel forms an expanding cone, the sheet breaks up to form a vortex structure and the vortices continue to expand after the end of the injection. Fuel vapor is firstly observed at the same locations as the liquid drops, and is then accumulated into the center of the vortices. In addition, penetration of liquid phase and vapor phase are found to be very similar. Various injection pressures have been tested, which shows that increasing the fuel pressure from 10 to 20 MPa results in a larger vortex structure. The fuel evaporation can be followed by studying the evolution of the monomer and exciplex fluorescence as a function of time. At room temperature the vaporization is found to be very slow, but above 40°C there is a noticeablepresence of vapor at the end of the injection, and at higher temperatures, the vaporization goes even faster.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.5023

Publisher

Universitat Politècnica València

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MGNet: Monocular Geometric Scene Understanding for Autonomous Driving;2021 IEEE/CVF International Conference on Computer Vision (ICCV);2021-10

2. Short thermal cycle treatment with laser of vanadium microalloyed steels;Journal of Manufacturing Processes;2020-09

3. Microstructure and mechanical properties of laser surface treated 44MnSiVS6 microalloyed steel;Optics & Laser Technology;2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3