Abstract
Given a partial action of a topological group G on a space X we determine properties P which can be extended from X to its globalization. We treat the cases when P is any of the following: Hausdorff, regular, metrizable, second countable, and having invariant metric. Further, for a normal subgroup H, we introduce and study a partial action of G/H on the orbit space of X; applications to invariant metrics and inverse limits are presented.
Publisher
Universitat Politecnica de Valencia
Reference17 articles.
1. F. Abadie, Enveloping actions and Takai duality for partial actions. Journal of Funct. Anal. 197 (2003), 14-67. https://doi.org/10.1016/S0022-1236(02)00032-0
2. S. A. Antonyan, Equivariant embeddings into G-AR's, Glasnik Matematički 22 (42) (1987), 503-533.
3. A. Baraviera, R. Exel, D. Gonçalves, F. B. Rodrigues and D. Royer, Entropy for partial actions of Z, Proc. Amer. Math. Soc. 150 (2022), 1089-1103. https://doi.org/10.1090/proc/15793
4. S. De Neymet and R. Jiménez, Introducción a los grupos topológicos de transformaciones, Aportaciones matemáticas: Textos, 2005.
5. M. Dokuchaev, Recent developments around partial actions, Sao Paulo J. Math. Sci. 13, no. 1 (2019), 195-247. https://doi.org/10.1007/s40863-018-0087-y