Learning IS-A relations from specialized-domain texts with co-occurrence measures

Author:

Urena Pedro

Abstract

<p>Ontology  enrichment  is  a  classification  problem  in which  an  algorithm  categorizes  an  input conceptual unit  in the corresponding node  in a target ontology. Conceptual enrichment  is of great importance both to Knowledge Engineering and Natural Language Processing, because it helps maximize the efficacy of intelligent systems, making them more adaptable to scenarios where  information  is  produced  by  means  of  language.  Following  previous  research  on distributional  semantics,  this  paper  presents  a  case  study  of  ontology  enrichment  using  a feature-extraction  method  which  relies  on  collocational  information  from  corpora.  The  major advantage  of  this  method  is  that  it  can  help  locate  an  input  unit  within  its  corresponding superordinate node in a taxonomy using a relatively small number of lexical features. In order to  evaluate  the  proposed  framework,  this  paper  presents  an  experiment  consisting  of  the automatic classification of a chemical substance in a taxonomy of toxicology.</p>

Publisher

Universitat Politecnica de Valencia

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference35 articles.

1. Agirre, Eneko, Alfonseca, Enrique, and Oier López de Lacalle. 2004. Approximating Hierarchy-based Similarity for WordNet Nominal Synsets Using Topic Signatures. Proceedings of GWC-04, 2nd global WordNet Conference, edited by Petr Sojka, Karel Pala, Pavel Smrž, Christiane Fellbaum, and Piek Vossen, 15-22. The Global Wordnet Association.

2. Alfonseca, Enrique, and Suresh Manandhar. 2002. "Extending a Lexical Ontology by a Combination of Distributional Semantics Signatures." In Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web. EKAW 2002. Lecture Notes in Computer Science, edited by Asunción Gómez-Pérez, and Richard Benjamins, Vol. 2473, 1-7. Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-45810-7_1

3. Anthony, Laurence. 2018. AntCorGen (Version 1.1.1) [Computer Software]. Tokyo, Japan: Waseda University. Available from http://www.antlab.sci.waseda.ac.jp/

4. Biemann, Chris. 2005. "Ontology learning from text: A survey of methods." LDV forum 20(2): 75-93.

5. Buitelaar, Paul, and Philipp Cimiano, eds. 2008. Ontology Learning and Population: Bridging the Gap between Text and Knowledge. Amsterdam: IOS Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3