Survive to stay connected: patterns of user experiences in a Life Long Learning digital platform

Author:

Cannistrà Marta1,Soncin Mara1,Frattini Federico1

Affiliation:

1. Politecnico di Milano

Abstract

In an ever-changing world, having the right competences for the job market represents a key challenge for sustained employability. To address this need a growing number of digital platform for life long learning (LLL) has been developed. Anyway, it is less known how users navigate and use these platforms. The present study represents a one of the first attempts to  fill this gap, offering a deep analysis for the identification of latent subgroups of learners with similar behaviours on a digital LLL platform. Then, the identified subgroups are described in terms of personal features and survival profiles. Findings reveal three distictive latent classes, with very different survival profiles. The analysis provides interesting insights about how the administators of a digital LLL platform can  better personalize their contents according to the type of learner, to support and let them stay on the platform, acquiring the needed skills for the job market. 

Publisher

Editorial Universitat Politécnica de Valéncia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3