Performance of Climate Projections for Yukon and Adjacent Northwest Territories, 1991 – 2020

Author:

Schetselaar AstridORCID,Andersen TrevorORCID,Burn Christopher R.ORCID

Abstract

Permafrost foundation design recognizes the impact of climate change on soil bearing capacity, as described in Canadian guideline CSA PLUS 4011:19. There is, however, no guidance as to the climate scenarios most prudent to adopt for such design. We have compared climate change scenarios outlined in 2003 for the design of the proposed Mackenzie Gas Project (MGP) with climate data for 1991 – 2020 to determine the projections most representative of what did, in fact, occur. In Canada, the greatest change in climate during the last 50 years has been measured in the western Arctic, where fluctuations in annual air temperatures are regionally consistent. In this region, the rate of change in annual mean air temperature for 1971 – 2020 has ranged from 0.77 °C decade-1 at Inuvik, NT, to 0.30 °C decade-1 at Komakuk Beach, YT, with warming concentrated in winter. No statistically significant trends in total annual precipitation have been observed and these records are poorly correlated within the region. In 2003, 29 climate projections from seven global climate models were examined for the MGP and, in 2005, for research regarding forest fires in Yukon. The observed climate warming in Yukon and adjacent Northwest Territories during 1991 – 2020 was close to the upper projections for mean annual and winter air temperature. For example, at Inuvik the 2.3 °C increase observed in mean annual air temperature between 1961 – 90 and 1991 – 2020, exceeds the median projection for change by 2010 – 39 of +1.6 °C and approaches the upper value of +2.4 °C. No consistency between observed and projected precipitation has been determined. These results indicate that, when required, future projections of temperature in northwest Canada may prudently adopt higher or more extreme scenarios because they have been the most realistic to date. They imply that near-surface permafrost may soon become unsustainable in southern parts of the region and so site investi gations to locate thaw-stable soils will likely be cost effective for new projects.

Publisher

The Arctic Institute of North America

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3