The exponential map at a cuspidal singularity

Author:

Grandjean Vincent,Grieser Daniel

Abstract

AbstractWe study spaces with a cuspidal (or horn-like) singularity embedded in a smooth Riemannian manifold and analyze the geodesics in these spaces which start at the singularity. This provides a basis for understanding the intrinsic geometry of such spaces near the singularity. We show that these geodesics combine to naturally define an exponential map based at the singularity, but that the behavior of this map can deviate strongly from the behavior of the exponential map based at a smooth point or at a conical singularity: While it is always surjective near the singularity, it may be discontinuous and non-injective on any neighborhood of the singularity. The precise behavior of the exponential map is determined by a function on the link of the singularity which is an invariant of the induced metric. Our methods are based on the Hamiltonian system of geodesic differential equations and on techniques of singular analysis. The results are proved in the more general natural setting of manifolds with boundary carrying a so-called cuspidal metric.

Funder

Deutsche Forschungsgemeinschaft

Fields Institute, Toronto, Canada

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference34 articles.

1. Linearization of systems of differential equations in the neighborhood of invariant toroidal manifolds;Proc. Moscow Math. Soc.,1979

2. Lipschitz triangulations;Illinois J. Math.,2005

3. Geodesics in conical manifolds;Topol. Methods Nonlinear Anal.,2005

4. Tangent spaces and Gromov–Hausdorff limits of subanalytic spaces;J. reine angew. Math.,2007

5. Geodesics in conical manifolds;Topol. Methods Nonlinear Anal.,2005

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On topology changes in quantum field theory and quantum gravity;Reviews in Mathematical Physics;2024-01-11

2. Geodesics orbiting a singularity;Journal of Geometry;2023-12-09

3. Monomialization of singular metrics on real surfaces;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2019-07-17

4. Scales, blow-up and quasimode constructions;Geometric and Computational Spectral Theory;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3