Total mean curvature of the boundary and nonnegative scalar curvature fill-ins

Author:

Shi Yuguang1ORCID,Wang Wenlong2ORCID,Wei Guodong3ORCID

Affiliation:

1. Key Laboratory of Pure and Applied Mathematics , School of Mathematical Sciences , Peking University , Beijing , 100871 , P. R. China

2. School of Mathematical Sciences and LPMC , Nankai University , Tianjin , 300071 , P. R. China

3. School of Mathematics (Zhuhai) , Sun Yat-sen University , Zhuhai , Guangdong, 519082 , P. R. China

Abstract

Abstract In the first part of this paper, we prove the extensibility of an arbitrary boundary metric to a positive scalar curvature (PSC) metric inside for a compact manifold with boundary, completely solving an open problem due to Gromov (see Question 1.1). Then we introduce a fill-in invariant (see Definition 1.2) and discuss its relationship with the positive mass theorems for asymptotically flat (AF) and asymptotically hyperbolic (AH) manifolds. Moreover, we prove that the positive mass theorem for AH manifolds implies that for AF manifolds via this fill-in invariant. In the end, we give some estimates for the fill-in invariant, which provide some partially affirmative answers to Gromov’s two conjectures formulated in [M. Gromov, Four lectures on scalar curvature, preprint 2019] (see Conjecture 1.1 and Conjecture 1.2 below).

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities Nankai University

Natural Science Foundation of Tianjin

Science and Technology Projects of Guangzhou

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fill-ins with scalar curvature lower bounds and applications to positive mass theorems;Annals of Global Analysis and Geometry;2024-05-06

2. Noncompact Fill-Ins of Bartnik Data;The Journal of Geometric Analysis;2024-02-15

3. Rigidity and Non-Rigidity of $\mathbb{H}^n/\mathbb{Z}^{n-2}$ with Scalar Curvature Bounded from Below;Symmetry, Integrability and Geometry: Methods and Applications;2023-11-01

4. On a class of regions with maximal total mean curvature boundary;SCIENTIA SINICA Mathematica;2023-05-01

5. Nonexistence of DEC spin fill-ins;Comptes Rendus. Mathématique;2022-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3