A quantitative stability result for the sphere packing problem in dimensions 8 and 24

Author:

Böröczky Károly J.1ORCID,Radchenko Danylo2,Ramos João P. G.3

Affiliation:

1. Hungarian Academy of Sciences , [ 119496]Alfred Renyi Institute of Mathematics, Budapest , Hungary

2. Laboratoire Paul Painlevé , [ 129787]Université de Lille, Villeneuve-d’Ascq , France

3. [ 27219]ETH Zürich, Zürich , Switzerland

Abstract

Abstract We prove explicit stability estimates for the sphere packing problem in dimensions 8 and 24, showing that, in the lattice case, if a lattice is ε {\sim\varepsilon} close to satisfying the optimal density, then it is, in a suitable sense, close to the E 8 {E_{8}} and Leech lattices, respectively. In the periodic setting, we prove that, under the same assumptions, we may take a large “frame” through which our packing locally looks like E 8 {E_{8}} or Λ 24 {\Lambda_{24}} . Our methods make explicit use of the magic functions constructed in [M. S. Viazovska, The sphere packing problem in dimension 8, Ann. of Math. (2) 185 2017, 3, 991–1015] in dimension 8 and in [H. Cohn, A. Kumar, S. D. Miller, D. Radchenko and M. Viazovska, The sphere packing problem in dimension 24, Ann. of Math. (2) 185 2017, 3, 1017–1033] in dimension 24, together with results of independent interest on the abstract stability of the lattices E 8 {E_{8}} and Λ 24 {\Lambda_{24}} .

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3