A nonexistence result for rotating mean curvature flows in ℝ4

Author:

Du Wenkui1,Haslhofer Robert1

Affiliation:

1. Department of Mathematics , University of Toronto , 40 St George Street , Toronto , ON M5S 2E4 , Canada

Abstract

Abstract Some worrisome potential singularity models for the mean curvature flow are rotating ancient flows, i.e. ancient flows whose tangent flow at - {-\infty} is a cylinder k × S n - k {\mathbb{R}^{k}\times S^{n-k}} and that are rotating within the k {\mathbb{R}^{k}} -factor. We note that while the k {\mathbb{R}^{k}} -factor, i.e. the axis of the cylinder, is unique by the fundamental work of Colding-Minicozzi, the uniqueness of tangent flows by itself does not provide any information about rotations within the k {\mathbb{R}^{k}} -factor. In the present paper, we rule out rotating ancient flows among all ancient noncollapsed flows in 4 {\mathbb{R}^{4}} .

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference27 articles.

1. B. Andrews, Noncollapsing in mean-convex mean curvature flow, Geom. Topol. 16 (2012), no. 3, 1413–1418.

2. S. Brendle and K. Choi, Uniqueness of convex ancient solutions to mean curvature flow in ℝ 3 {\mathbb{R}^{3}} , Invent. Math. 217 (2019), no. 1, 35–76.

3. S. Brendle and K. Choi, Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions, Geom. Topol. 25 (2021), no. 5, 2195–2234.

4. O. Chodosh, K. Choi, C. Mantoulidis and F. Schulze, Mean curvature flow with generic initial data, preprint (2020), https://arxiv.org/abs/2003.14344.

5. B. Choi, P. Daskalopoulos, W. Du, R. Haslhofer and N. Sesum, Classification of bubble-sheet ovals in ℝ 4 {\mathbb{R}^{4}} , preprint (2022), https://arxiv.org/abs/2209.04931.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced profile estimates for ovals and translators;Advances in Mathematics;2024-09

2. On κ-solutions and\break canonical neighborhoods in 4d Ricci flow;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-04-24

3. Ancient Solutions of Ricci Flow with Type I Curvature Growth;The Journal of Geometric Analysis;2024-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3