Affiliation:
1. Department of Electronics and Communication, New Horizon College of Engineering , Bangalore , India
2. CMR Institute of Technology , Bangalore , India
Abstract
Abstract
In this modern world, a massive amount of data is processed and broadcasted daily. This includes the use of high energy, massive use of memory space, and increased power use. In a few applications, for example, image processing, signal processing, and possession of data signals, etc., the signals included can be viewed as light in a few spaces. The compressive sensing theory could be an appropriate contender to manage these limitations. “Compressive Sensing theory” preserves extremely helpful while signals are sparse or compressible. It very well may be utilized to recoup light or compressive signals with less estimation than customary strategies. Two issues must be addressed by CS: plan of the estimation framework and advancement of a proficient sparse recovery calculation. The essential intention of this work expects to audit a few ideas and utilizations of compressive sensing and to give an overview of the most significant sparse recovery calculations from every class. The exhibition of acquisition and reconstruction strategies is examined regarding the Compression Ratio, Reconstruction Accuracy, Mean Square Error, and so on.
Subject
Artificial Intelligence,Information Systems,Software
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献