Multi-sensor remote sensing image alignment based on fast algorithms

Author:

Shu Tao1

Affiliation:

1. Information Technology Center, Sichuan Vocational and Technical College , Suining 629000 , China

Abstract

Abstract Remote sensing image technology to the ground has important guiding significance in disaster assessment and emergency rescue deployment. In order to realize the fast automatic registration of multi-sensor remote sensing images, the remote sensing image block registration idea is introduced, and the image reconstruction is processed by using the conjugate gradient descent (CGD) method. The scale-invariant feature transformation (SIFT) algorithm is improved and optimized by combining the function-fitting method. By this way, it can improve the registration accuracy and efficiency of multi-sensor remote sensing images. The results show that the average peak signal-to-noise ratio of the image processed by the CGD method is 25.428. The average root mean square value is 17.442. The average image processing time is 6.093 s. These indicators are better than the passive filter algorithm and the gradient descent method. The average accuracy of image registration of the improved SIFT registration method is 96.37%, and the average image registration time is 2.14 s. These indicators are significantly better than the traditional SIFT algorithm and speeded-up robust features algorithm. It is proved that the improved SIFT registration method can effectively improve the accuracy and operation efficiency of multi-sensor remote sensing image registration methods. The improved SIFT registration method effectively solves the problems of low accuracy and long time consumption of traditional multi-sensor remote sensing image fast registration methods. While maintaining high registration accuracy, it improves the image registration speed and provides technical support for a rapid disaster assessment after major disasters such as earthquakes and floods. And it has an important value for the development of the efficient post-disaster rescue deployment.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3