A novel deep learning-based brain tumor detection using the Bagging ensemble with K-nearest neighbor

Author:

Archana K. V.1,Komarasamy G.2

Affiliation:

1. Department of computer science and engineering, School of Engineering and Technology, Jain University , Bangalore , India

2. Associate Professor (Grade-2), School of Computing Science and Engineering, VIT Bhopal University , Bhopal-Indore Highway, Kothrikalan , Sehore , Madhya Pradesh – 466114 , India

Abstract

Abstract In the case of magnetic resonance imaging (MRI) imaging, image processing is crucial. In the medical industry, MRI images are commonly used to analyze and diagnose tumor growth in the body. A number of successful brain tumor identification and classification procedures have been developed by various experts. Existing approaches face a number of obstacles, including detection time, accuracy, and tumor size. Early detection of brain tumors improves options for treatment and patient survival rates. Manually segmenting brain tumors from a significant number of MRI data for brain tumor diagnosis is a tough and time-consuming task. Automatic image segmentation of brain tumors is required. The objective of this study is to evaluate the degree of accuracy and simplify the medical picture segmentation procedure used to identify the type of brain tumor from MRI results. Additionally, this work suggests a novel method for identifying brain malignancies utilizing the Bagging Ensemble with K-Nearest Neighbor (BKNN) in order to raise the KNN’s accuracy and quality rate. For image segmentation, a U-Net architecture is utilized first, followed by a bagging-based k-NN prediction algorithm for classification. The goal of employing U-Net is to improve the accuracy and uniformity of parameter distribution in the layers. Each decision tree is fitted on a little different training dataset during classification, and the bagged decision trees are effective since each tree has minor differences and generates slightly different skilled predictions. The overall classification accuracy was up to 97.7 percent, confirming the efficiency of the suggested strategy for distinguishing normal and pathological tissues from brain MR images; this is greater than the methods that are already in use.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3