Robot indoor navigation point cloud map generation algorithm based on visual sensing

Author:

Zhang Qin1,Liu Xiushan1

Affiliation:

1. College of Electronics and Information, Guangdong Polytechnic Normal University , Guangzhou 510665 , China

Abstract

Abstract At present, low-cost Red Green Blue Depth (RGB-D) sensors are mainly used in indoor robot environment perception, but the depth information obtained by RGB-D cameras has problems such as poor accuracy and high noise, and the generated 3D color point cloud map has low accuracy. In order to solve these problems, this article proposes a vision sensor-based point cloud map generation algorithm for robot indoor navigation. The aim is to obtain a more accurate point cloud map through visual SLAM and Kalman filtering visual-inertial navigation attitude fusion algorithm. The results show that in the positioning speed test data of the fusion algorithm in this study, the average time-consuming of camera tracking is 23.4 ms, which can meet the processing speed requirement of 42 frames per second. The yaw angle error of the fusion algorithm is the smallest, and the ATE test values of the algorithm are smaller than those of the Inertial measurement unit and Simultaneous-Localization-and-Mapping algorithms. This research algorithm can make the mapping process more stable and robust. It can use visual sensors to make more accurate route planning, and this algorithm improves the indoor positioning accuracy of the robot. In addition, the research algorithm can also obtain a dense point cloud map in real time, which provides a more comprehensive idea for the research of robot indoor navigation point cloud map generation.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3