Parallel Distance-Based Instance Selection Algorithm for Feed-Forward Neural Network

Author:

Fuangkhon Piyabute1

Affiliation:

1. 1Department of Business Information Systems, Assumption University, Samut Prakan 10540, Kingdom of Thailand

Abstract

AbstractInstance selection endeavors to decide which instances from the data set should be maintained for further use during the learning process. It can result in increased generalization of the learning model, shorter time of the learning process, or scaling up to large data sources. This paper presents a parallel distance-based instance selection approach for a feed-forward neural network (FFNN), which can utilize all available processing power to reduce the data set while obtaining similar levels of classification accuracy as when the original data set is used. The algorithm identifies the instances at the decision boundary between consecutive classes of data, which are essential for placing hyperplane decision surfaces, and retains these instances in the reduced data set (subset). Each identified instance, called a prototype, is one of the representatives of the decision boundary of its class that constitutes the shape or distribution model of the data set. No feature or dimension is sacrificed in the reduction process. Regarding reduction capability, the algorithm obtains approximately 85% reduction power on non-overlapping two-class synthetic data sets, 70% reduction power on highly overlapping two-class synthetic data sets, and 77% reduction power on multiclass real-world data sets. Regarding generalization, the reduced data sets obtain similar levels of classification accuracy as when the original data set is used on both FFNN and support vector machine. Regarding execution time requirement, the speedup of the parallel algorithm over the serial algorithm is proportional to the number of threads the processor can run concurrently.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference48 articles.

1. LIBSVM: a library for support vector machines;ACM Trans. Intell. Syst. Technol.,2011

2. Fuzzy logic approaches to structure preserving dimensionality reduction;IEEE Trans. Fuzzy Syst.,2002

3. Training data reduction to speed up SVM training;Appl. Intell.,2014

4. Asymptotic properties of nearest neighbor rules using edited data;IEEE Trans. Syst. Man Cybern.,1972

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3