Ontologies4Chem: the landscape of ontologies in chemistry
Author:
Strömert Philip1ORCID, Hunold Johannes1ORCID, Castro André1ORCID, Neumann Steffen2ORCID, Koepler Oliver1ORCID
Affiliation:
1. TIB – Leibniz Information Centre for Science and Technology , Welfengarten 1 B, 30167 Hannover , Germany 2. Leibniz Institute of Plant Biochemistry , Weinberg 3 , 06120 Halle , Germany
Abstract
Abstract
For a long time, databases such as CAS, Reaxys, PubChem or ChemSpider mostly rely on unique numerical identifiers or chemical structure identifiers like InChI, SMILES or others to link data across heterogeneous data sources. The retrospective processing of information and fragmented data from text publications to maintain these databases is a cumbersome process. Ontologies are a holistic approach to semantically describe data, information and knowledge of a domain. They provide terms, relations and logic to semantically annotate and link data building knowledge graphs. The application of standard taxonomies and vocabularies from the very beginning of data generation and along research workflows in electronic lab notebooks (ELNs), software tools, and their final publication in data repositories create FAIR data straightforwardly. Thus a proper semantic description of an investigation and the why, how, where, when, and by whom data was produced in conjunction with the description and representation of research data is a natural outcome in contrast to the retrospective processing of research publications as we know it. In this work we provide an overview of ontologies in chemistry suitable to represent concepts of research and research data. These ontologies are evaluated against several criteria derived from the FAIR data principles and their possible application in the digitisation of research data management workflows.
Publisher
Walter de Gruyter GmbH
Subject
General Chemical Engineering,General Chemistry
Reference70 articles.
1. M. D. Wilkinson, M. Dumontier, I. J. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-Beltran, A. J. G. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. C. ’t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E. Martone, A. Mons, A. L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M. A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, B. Mons. Sci. Data 3, 160018 (2016), https://doi.org/10.1038/sdata.2016.18. 2. A. Jacobsen, R. de Miranda Azevedo, N. Juty, D. Batista, S. Coles, R. Cornet, M. Courtot, M. Crosas, M. Dumontier, C. T. Evelo, C. Goble, G. Guizzardi, K. K. Hansen, A. Hasnain, K. Hettne, J. Heringa, R. W. W. Hooft, M. Imming, K. G. Jeffery, R. Kaliyaperumal, M. G. Kersloot, C. R. Kirkpatrick, T. Kuhn, I. Labastida, B. Magagna, P. McQuilton, N. Meyers, A. Montesanti, M. van Reisen, P. Rocca-Serra, R. Pergl, S.-A. Sansone, L. O. B. da Silva Santos, J. Schneider, G. Strawn, M. Thompson, A. Waagmeester, T. Weigel, M. D. Wilkinson, E. L. Willighagen, P. Wittenburg, M. Roos, B. Mons, E. Schultes. Data Intell. 2, 10 (2020), https://doi.org/10.1162/dint_r_00024. 3. D. Sun, F. Sato, Y. Yamada, S. Sato. Bull. Chem. Soc. Jpn. 86, 276 (2013), https://doi.org/10.1246/bcsj.20120247. 4. B. Smith. Ontology, in The Blackwell Guide to the Philosophy of Computing and Information, L. Floridi (Ed.), Wiley-Blackwell, Malden, USA (2004), https://doi.org/10.1002/9780470757017.ch11. 5. T. R. Gruber. Int. J. Hum. Comput. Stud. 43, 907 (1995), https://doi.org/10.1006/ijhc.1995.1081.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|