Affiliation:
1. Department of Economics , Middlesex University , The Burroughs, NW4 4BT , London , UK
2. Independent Researcher , Berlin BorsigStr. 3 , Germany
Abstract
Abstract
The GARCH model is the most used technique for forecasting conditional volatility. However, the nearly integrated behaviour of the conditional variance originates from structural changes which are not accounted for by standard GARCH models. We compare the forecasting performance of the GARCH model to three regime switching models: namely, the Markov Switching GARCH, the Hidden Markov Model, and the Gated Recurrent Unit neural network. We define the number of optimal states by means of three methods: piecewise linear regression, Baum–Welch algorithm and Markov Chain Monte Carlo. Since forecasting volatility models face the bias-variance trade-off, we compare their out-of-sample forecasting performance via a walk-forward methodology. Moreover, we provide a robustness check for the results by applying k-fold cross-validation to the original time series. The Gated Recurrent Unit network is the best suited for volatility forecasting, while the Hidden Markov Model is the best at discerning the market regimes.
Subject
Economics and Econometrics,Social Sciences (miscellaneous),Analysis,Economics and Econometrics,Social Sciences (miscellaneous),Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献