Secant-type iteration for nonlinear ill-posed equations in Banach space

Author:

George Santhosh1ORCID,Sreedeep C. D.2ORCID,Argyros Ioannis K.3ORCID

Affiliation:

1. Department of Mathematical and Computational Sciences , National Institute of Technology Karnataka , Mangaluru 575 025 , India

2. Department of Mathematics , Amrita Vishwa Vidyapeetham , Amrithapuri 690525 , India

3. Department of Mathematical Sciences , Cameron University , Lawton , OK 73505 , USA

Abstract

Abstract In this paper, we study secant-type iteration for nonlinear ill-posed equations involving 𝑚-accretive mappings in Banach spaces. We prove that the proposed iterative scheme has a convergence order at least 2.20557 using assumptions only on the first Fréchet derivative of the operator. Further, using a general Hölder-type source condition, we obtain an optimal error estimate. We also use the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics

Reference14 articles.

1. J. I. Alber, The solution by the regularization method of operator equations of the first kind with accretive operators in a Banach space, Differ. Uravn. 11 (1975), no. 12, 2242–2248, 2302.

2. Y. Alber and I. Ryazantseva, Nonlinear Ill-Posed Problems of Monotone Type, Springer, Dordrecht, 2006.

3. I. K. Argyros, Convergence and Applications of Newton-Type Iterations, Springer, New York, 2008.

4. I. K. Argyros and S. George, Iterative regularization methods for nonlinear ill-posed operator equations with 𝑚-accretive mappings in Banach spaces, Acta Math. Sci. Ser. B (Engl. Ed.) 35 (2015), no. 6, 1318–1324.

5. N. Buong, Convergence rates in regularization for nonlinear ill-posed equations under accretive perturbations, Zh. Vychisl. Mat. Mat. Fiz. 44 (2004), no. 3, 397–402.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3