Numerically statistical investigation of the partly super-exponential growth rate in the COVID-19 pandemic (throughout the world)

Author:

Lotova Galiya Z.1ORCID,Mikhailov Guennady A.1

Affiliation:

1. Institute of Computational Mathematics and Mathematical Geophysics SB RAS , Akad. Lavrentieva avenue 6, 630090; and Novosibirsk State University , Pirogova 1, 630090 Novosibirsk , Russia

Abstract

Abstract A number of particles in a multiplying medium under rather general conditions is asymptotically exponential with respect to time t with the parameter λ, i.e., with the index of power λ t {\lambda t} . If the medium is random, then the parameter λ is the random variable. To estimate the temporal asymptotics of the mean particles number (via the medium realizations), it is possible to average the exponential function via the corresponding distribution. Assuming that this distribution is Gaussian, the super-exponential estimate of the mean particle number could be obtained and expressed by the exponent with the index of power t E λ + t 2 D λ 2 {t{\rm E}\lambda+t^{2}{\rm D}\frac{\lambda}{2}} . The application of this new formula to investigation of the COVID-19 pandemic is performed.

Funder

Russian Foundation for Basic Research

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics

Reference3 articles.

1. G. Z. Lotova and G. A. Mikhailov, The study of time dependence of particle flux with multiplication in a random medium, Russian J. Numer. Anal. Math. Modelling 35 (2020), 11–20.

2. A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, Integrals and Series (in Russian), Nauka, Moscow, 1981.

3. Website of the World Health Organization. ␣https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence for COVID-19 spread modeling;Journal of Inverse and Ill-posed Problems;2024-03-20

2. ABOUT MATHEMATICAL MODELING OF COVID-19;SIB ELECTRON MATH RE;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3