Effect of Concentration by Thermal Swing Adsorption on the Catalytic Incineration of VOCs

Author:

Campesi Agustina,Luzi Carlos D.,Martínez Osvaldo M.,Barreto Guillermo

Abstract

Abstract Among the different processes for elimination of volatile organic compounds (VOCs) from gaseous effluents (mainly air streams), the frequently employed catalytic oxidation is undertaken in this contribution. With the purpose of reducing the amount of catalyst needed for incineration and the surface of recuperative heat exchangers, thermal swing adsorption can be use as a previous step for VOC concentration.By means of simulating the behavior of a conventional packed bed reactor and using kinetic expressions recently developed for the incineration of mixtures of ethyl acetate and ethanol on a laboratory catalyst based on Mn/Cu oxides, it is shown in this paper that the reduction in catalyst volume is significantly larger than the concentration factor, due to the combined effect of the lower flow rate and temperature rise.A second aspect dealt with in this contribution concern the simulation of the packed bed reactor. The intraparticle mass-transfer limitations turn out to be very strong and, consequently, the mass conservation balances of three species inside the particles should be solved numerically and iteratively at each position inside the bed. A precise approximation to circumvent such procedure is developed and shown to reduce computing time in more than one order of magnitude and to avoid convergence troubles otherwise found with the numerical procedure.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3