Machine learning to optimize cerebrospinal fluid dilution for analysis of MRZH reaction

Author:

Turčić Ana1ORCID,Štajduhar Andrija2,Vogrinc Željka13,Zaninović Ljiljana1,Rogić Dunja13

Affiliation:

1. Department of Laboratory Diagnostics , University Hospital Centre Zagreb , Zagreb , Croatia

2. Andrija Štampar School of Public Health, School of Medicine, University of Zagreb , Zagreb , Croatia

3. Faculty of Pharmacy and Biochemistry, University of Zagreb , Zagreb , Croatia

Abstract

Abstract Objectives To create a supervised machine learning algorithm aimed at predicting an optimal cerebrospinal fluid (CSF) dilution when determining virus specific antibody indices to reduce the need for repeated tests. Methods The CatBoost model was trained, optimized, and tested on a dataset with five input variables: albumin quotient, immunoglobulin G (IgG) in CSF, IgG quotient (QIgG), intrathecal synthesis (ITS) and limes quotient (LIM IgG). Albumin and IgG concentrations in CSF and serum were performed by immunonephelometry on Atellica NEPH 630 (Siemens Healthineers, Erlangen, Germany) and ITS and LIM IgG were calculated according to Reiber. Concentrations of IgG antibodies to measles, rubella, varicella zoster and herpes simplex 1/2 viruses were analysed in CSF and serum by ELISA (Euroimmun, Lübeck, Germany). Optimal CSF dilution was defined for each virus and used as a classification variable while the standard operating procedure was set to start at 2×-dilution of CSF. Results The dataset included 571 samples with the imbalanced distribution of the optimal CSF dilutions: 2× dilution n=440, 3× dilution n=109, 4× dilution n=22. The optimized CatBoost model achieved an area under the curve (AUC) score of 0.971, and a test accuracy of 0.900. The model falsely classified 14 (9.9 %) samples of the testing set but reduced the need for repeated testing compared to the standard protocol by 42 %. The output of the CatBoost model is mostly dependant on the QIgG, ITS and CSF IgG variables. Conclusions An accurate algorithm was achieved for predicting the optimal CSF dilution, which reduces the number of test repeats.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3