Updating risk model for SGTR accident based on success criteria analysis

Author:

Mohammadnia Meisam1,Hoseyni Seyed Mohsen1ORCID,Karimi Kaveh1

Affiliation:

1. Department of Basic Sciences, East Tehran Branch , Islamic Azad University , Tehran , Iran

Abstract

Abstract Success criteria analysis plays a key role in the development of realistic probabilistic safety/risk assessment (PSA/PRA) model because it provides supporting information regarding the response of complex nuclear power plant systems to different accident conditions. The current paper performs plant specific success criteria analysis for steam generator tube rupture (SGTR) accident in a typical pressurized water reactor (PWR) and demonstrates implementation of the obtained best estimate results on a risk model which has been initially developed based on expert judgment and general plant design data. The modifications on the risk model include configuration of the safety systems as well as the event tree structure. The updated PSA model shows 50% reduction in the plant core damage frequency (CDF) in comparison to the base case risk model. This highlights the importance of success criteria analysis for the development of a realistic PSA model in risk informed applications.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

Reference14 articles.

1. ANS/ASME. (2014). Requirements for low power and shutdown probabilistic risk assessment (ANS/ASME 58.22).

2. ASME/ANS. (2009). Standard for level 1/large early release frequency PRA for NPP applications (ASME/ANS RA-Sa-2009).

3. ASME/ANS. (2021). Probabilistic risk assessment standard for advanced non-LWR nuclear power plants (ASME/ANS RA-S-1.4–2021).

4. Campbell, S. (2020). NUREG-2236, confirmatory thermal-hydraulic analysis to support specific success criteria in the standardized plant analysis risk models-Duane Arnold. U.S. Nuclear Regulatory Commission, Washington, DC.

5. Esmaili, H. (2011). Confirmatory thermal-hydraulic analysis to support NUREG-1953, specific success criteria in the standardized plant analysis risk models—surry and peach bottom. U.S. Nuclear Regulatory Commission, Washington, DC.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3