Study of the effect of virtual mass force on two-phase critical flow

Author:

Xu Hong1,Chen Jiayue1,Ming Pingjian1,Badea Aurelian Florin2,Cheng Xu2

Affiliation:

1. Sino-French Institute of Nuclear Engineering and Technology , Sun Yat-sen University , Zhuhai , China

2. Institute for Applied Thermofluidics (IATF) , Karlsruhe Institute of Technology (KIT) , Karlsruhe , Germany

Abstract

Abstract Critical (choked) flow is a highly concerning phenomenon in safety analysis for nuclear energy. The discharge mass flow rate prediction is crucial for engineering design and emergency response in case of nuclear accidents. Unfortunately, the critical flow is difficult to predict especially when the two-phase flow exists. The accuracy is based on a deeper understanding of the complex phenomenon of critical flow. The influence of virtual mass force on the two-phase critical flow was seldom concentrated on owing to the lack of suitable critical flow models for studies in detail. This study is based on a developed 6-equation two-phase critical flow model. It is confirmed that the virtual mass force contributes to the stability and convergence of the critical flow simulation and it will impact not only the critical mass flux but also the thermal hydraulic parameters along the discharge duct. The magnitude depends on the geometry of the discharge duct and the upstream condition. It is larger when the duct is longer and the pressure is lower. Furthermore, the virtual mass force for each flow regime was studied in detail with a sensitivity study. The results show that the most sensible condition for the virtual mass force is annular flow along a long tube under relatively low pressure. The future work is to develop a correlation of virtual mass force for critical flow specifically since the correlations in the literature were developed under general two-phase flow process conditions.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

Reference28 articles.

1. Al-Sahan, M.A. (1988). On the development of the flow regimes and the formulation of a mechanistic non-equilibrium model for critical two-phase flow. University of Toronto, Ph.D. thesis.

2. Biesheuvel, A. and Spoelstra, S. (1989). The added mass coefficient of a dispersion of spherical gas bubbles in liquid. Int. J. Multiphas. Flow 15: 911–924, https://doi.org/10.1016/0301-9322(89)90020-7.

3. Cao, F., Yang, W., Li, L., Qiu, J., and Shan, J. (2021). Eigenvalue analysis of well-posedness of two-fluid single pressure model with virtual mass force and interfacial pressure (ICONE28-64434). In: Proceedings of the 28th international conference on nuclear engineering (ICONE28), Virtual, Online.

4. Cheng, L.Y., Drew, D.A., and Lahey, R.T.Jr (1978). Virtual mass effects in two phase flow. Rensselaer Polytechnic Institute (USA), Department of Nuclear Engineering, Technical Report, NUREG/CR0020.

5. Cheng, L.Y., Lahey, R.T.Jr, and Drew, D.A. (1983). The effect of virtual mass on the prediction of critical flow. Specialist meeting on transient two-phase flowMarch, Pasadena, CA (USA), 23-25 March, 1981.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3