Noise reduction and QRS detection in ECG signal using EEMD with modified sigmoid thresholding

Author:

Mohguen Ouahiba1

Affiliation:

1. Department of Electronics , LIS Laboratory University Ferhat Abbas Setif 1, Setif , Algeria

Abstract

Abstract Objectives Novel noise reduction and QRS detection algorithms in Electrocardiogram (ECG) signal based on Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) and the Modified Sigmoid Thresholding Function (MSTF) are proposed in this paper. Methods EMD and EEMD algorithms are used to decompose the noisy ECG signal into series of Intrinsic Mode Functions (IMFs). Then, these IMFs are thresholded by the MSTF for reduction of noises and preservation of QRS complexes. After that, the thresholded IMFs are used to obtain the clean ECG signal. The characteristic points P, Q, R, S and T peaks are detected using peak detection algorithm. Results The proposed methods are validated through experiments on the MIT-BIH arrhythmia database and Additive White Gaussian Noise (AWGN) is added to the clean ECG signal at different input SNR (SNR in). Standard performance parameters output SNR (SNR out), mean square error (MSE), root mean square error (RMSE), SNR improvement (SNR imp) and percentage root mean square difference (PRD) are employed for evaluation of the efficacy of the proposed methods. The results showed that the proposed methods provide significant quantitative and qualitative improvements in denoising performance, compared with existing state-of-the-art methods such as wavelet denoising, conventional EMD (EMD-Conv), conventional EEMD (EEMD-Conv, Stockwell Transform (ST) and Complete EEMD with Adaptative Noise with hybrid interval thresholding and higher order statistic to select relevant modes (CEEMDAN-HIT). Conclusions A detail quantitative analysis demonstrate that for abnormal ECG records 207 m and 214 m at input SNR of −2 dB the SNR imp value is 12.22 and 11.58 dB respectively, which indicates that the proposed algorithm can be used as an effective tool for denoising of ECG signals.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3