Application of grey relational analysis and artificial neural networks on currency exchange-traded notes (ETNs)

Author:

Chen Jo-Hui1,Diaz John Francis T.1

Affiliation:

1. Department of Finance , Chung Yuan Christian University , Chung Li , Taiwan, R.O.C

Abstract

Abstract This study determines which index has the strongest influence on the exchange-trade note (ETN) returns using the grey relational analysis. Results show that the volatility index is the strongest, followed by the S&P 500 stock index, the US dollar index, the CRB index, the Trade index, and the Brent crude oil index. However, the US dollar index has the most significant effect of using the index values of currency ETNs, followed by the S&P 500 stock index, volatility index, Brent crude oil index, the CRB index, and Trade index. This study applies four types of the artificial neural network model, namely, back-propagation neural network (BPN), recurrent neural network (RNN), time-delay recurrent neural network (TDRNN), and radial basis function neural network (RBFNN) to capture the nonlinear tendencies of ETNs for better forecasting accuracy. The paper finds that the RNN and RBFNN models have stronger predictive power among the models, and provides the highest forecasting accuracy for the majority of the currency ETNs. However, the RNN model consistently shows that the low grey relational grades (GRG) variables have the strongest influence on the ETN returns, compared with combining all and high GRG variables. These findings suggest that fund managers and traders can potentially rely on both RNN and RBFNN models, particularly the former, in their applications in financial time-series modeling.

Publisher

Walter de Gruyter GmbH

Subject

Economics and Econometrics,Social Sciences (miscellaneous),Analysis,Economics and Econometrics,Social Sciences (miscellaneous),Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3