Determination of safe levels of persistent organic pollutants in toxicology and epidemiology

Author:

Muir Tom1,Michalek Joel E2,Palmer Raymond F3

Affiliation:

1. Environment Canada , 70 Townsend Ave , Burlington , ON , Canada

2. Department of Population Health Sciences , UT Health San Antonio , San Antonio TX , USA

3. Department of Family and Community Medicine , UT Health San Antonio , San Antonio TX , USA

Abstract

Abstract We reviewed published manuscripts from toxicology and epidemiology reporting harmful health effects and doses of persistent organic pollutants (POPs), published between 2000 and 2021. We found 42 in vitro, 32 in vivo, and 74 epidemiological studies and abstracted the dose associated with harm in a common Molar unit. We hypothesized that the dose associated with harm would vary between animal and human studies. To test this hypothesis, for each of several POPs, we assessed the significance of variation in the dose associated with a harmful effect [categorized as non-thyroid endocrine (NTE), developmental neurotoxicity (DNT), and Thyroid] with study type (in vitro, in vivo, and Epidemiology) using a linear model after adjustment for basis (lipid weight, wet weight). We created a Calculated Safety Factor (CSF) defined as the toxicology dose divided by epidemiology dose needed to exhibit significant harm. Significant differences were found between study types ranging from <1 to 5.0 orders of magnitude in the dose associated with harm. Our CSFs in lipid weight varied from 12.4 (95% confidence interval (CI) 3.3, 47) for NTE effects in Epidemiology relative to in vivo studies to 6,244 (95% CI 2510, 15530) for DNT effects in Epidemiology relative to in vitro in wet weight representing 12.4 to 6.2 thousand-fold more sensitivity in people relative to animals, and mechanistic models, respectively. In lipid weight, all CSF 95% CI lower bounds across effect categories were less than 6.5. CIs for CSFs ranged from less than one to four orders of magnitude for in vivo, and two to five orders of magnitude for in vitro vs. Epidemiology. A global CSF for all Epidemiology vs. all Toxicology was 104.6 (95% CI 72 to 152), significant at p<0.001.

Publisher

Walter de Gruyter GmbH

Subject

Public Health, Environmental and Occupational Health,Pollution,Health (social science)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3