Senescent macrophages alter fibroblast fibrogenesis in response to SARS-CoV-2 infection

Author:

Pence Brandt1,Zhang Yufeng1,Antwi Ivy2,Cory Theodore James2ORCID

Affiliation:

1. University of Memphis College of Health Sciences , Memphis , TN , USA

2. Department of Clinical Pharmacy and Translational Science , University of Tennessee Health Science Center College of Pharmacy , Memphis , TN , USA

Abstract

Abstract SARS-CoV-2 has, since its emergence in 2019, become a global pandemic. Disease outcomes are worsened in older patients who are infected. The causes for this is multifactorial, but one potential cause for this disparity is increased rates of cellular senescence in older individuals, particularly in immune cells. Cellular senescence, the accumulation of factors resulting in cell growth arrest and apoptosis resistance, increases as individuals age. In immune cells, senescence is associated with increased inflammation, and alterations in immune response. We utilized a co-culture system consisting of senescent or non-senescent macrophages directly cultured with fibroblasts, and infected with SARS-CoV-2. We assessed the expression of collagen and fibronectin, important molecules in the extracellular matrix, as well as a number of fibrogenic factors. We observed that infection with SARS-CoV-2 induced collagen production in co-cultures with senescent, but not non-senescent macrophages. Fibronectin expression was decreased in both co-culture conditions. While significant results were not observed, concentrations of other fibrogenic molecules were consistent with the collagen results. These data demonstrate that senescence in macrophages alters the production of fibrotic molecules from fibroblasts in a SARS-CoV-2 infection model. As collagen and fibronectin expression are generally directly correlated, this suggests that senescence dysregulates fibrogenesis in response to infection with SARS-CoV-2. There is a need to further investigate the mechanisms for these changes.

Funder

National Institute on Drug Abuse

UTHSC/University of Memphis SARS-CoV-2/COVID-19 Research CORNET

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3