Preparation and application of corona noise-suppressing anti-shedding materials for UHV transmission lines

Author:

Cui Xiangyu1,Shi Xin1,Hou Xiaobang1,Yin Jianguang1,Li Fangwei1,Zang Yuwei1,Hu Jingchuan2,Xie Lianke1,Peng Jiashun2

Affiliation:

1. State Grid Shandong Electric Power Company , Shandong 250000 , PR China

2. School of Materials Science and Engineering, Wuhan Textile University , Wuhan 430200 , PR China

Abstract

Abstract With the continuous expansion of the construction scale of the State Grid and the gradual improvement of people’s awareness of environmental protection, the power contradictions and disputes caused by the North–South Power Transmission and Transformation Project have become increasingly prominent, which has attracted widespread attention from all walks of life. This study focuses on the development of conductive silicone gel for UHV transmission lines using carbon fiber (CF) powder, carbon black (CB), and carbon nanotubes as fillers, and organic silicone polymer as the matrix. The aim was to address the issues of corona noise and detachment. We prepared a series of conductive silicone gels with different proportions of CF and CB conductive fillers and conducted a comprehensive analysis of their electrical conductivity, tensile performance, hydrophobicity, and rheological properties. The research results demonstrated that the maximum electrical conductivity of the conductive silicone gel was achieved when the CF and CB contents reached a ratio of 2:1. In the case of a 70% organic silicone polymer gel, the electrical conductivity reached 0.73 S/cm, while it increased to 1.17 S/cm in an 80% organic silicone polymer gel. This indicates that optimizing the proportion of fillers can significantly enhance the electrical conductivity of the conductive silicone gel, meeting the requirements of UHV transmission lines. Additionally, the study evaluated the tensile performance, hydrophobicity, and rheological properties of the conductive silicone gel. The results showed that the 70% organic silicone polymer gel exhibited a tensile strength, Young’s modulus, and elongation at a break of 678.6 MPa, 1.3 MPa, and 15.22%, respectively. The corresponding values for the 80% organic silicone polymer gel were 129.9 MPa, 1.6 MPa, and 55.89%. This indicates that the conductive silicone gel possesses excellent mechanical properties and ductility, enabling it to withstand stress and deformation in UHV transmission lines while providing anti-detachment effects. In summary, this study successfully developed a conductive silicone gel that meets the requirements of UHV transmission lines. By optimizing the ratio of CF and CB contents, the electrical conductivity of the gel was maximized. Furthermore, the conductive silicone gel exhibited favorable tensile performance, electrical conductivity, and anti-detachment effects, effectively addressing corona noise and detachment issues in UHV transmission lines. These research findings are of great significance for the design and application of UHV transmission lines.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3