Natural polymer fillers instead of dye and pigments: Pumice and scoria in PDMS fluid and elastomer composites

Author:

Özvezir Esra1,Beyli Pınar Turan1

Affiliation:

1. Chemistry Department, Faculty of Science and Literature, Balikesir Üniversity , Balikesir , Turkey

Abstract

Abstract The electrical and thermal conductivities and light transmittance properties of silicone oil and polydimethylsiloxane (PDMS) elastomer composites were investigated. Pumice, scoria, nano-Ag, and multi-walled carbon nanotube (MWCNT) particles were used as fillers. An effective, clean, and easy method was used to prepare nanosized particles from pumice and scoria rocks. Only MWCNT–PDMS composites showed electrical conductivity. The highest electrical conductivity of 24.7 S·m−1 was obtained with the 25% pumice–10% MWCNT–silicone oil composite. All filler particles increased the thermal conductivity of the PDMS elastomer. MWCNTs were more effective than pumice and scoria, and the thermal conductivity reached 0.62 W·(m·K)−1 with an addition of 3 wt% MWCNTs. All filler particles decreased the transparency of the PDMS elastomer. The sample with 5 wt% pumice particles reached zero transmittance. Pumice and scoria naturally colored the PDMS elastomer. The powders of these natural volcanic rocks could be used as a suitable coloring filling material instead of dyes and pigments for polymers without waste. However, it was concluded that pumice and scoria particles are not suitable for making composites with silicone oil due to the possibility of catalyzing the degradation of linear PDSM.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3