Characterization of cellulose and TEMPO-oxidized celluloses prepared from Eucalyptus globulus

Author:

Ono Yuko1,Takeuchi Miyuki1,Zhou Yaxin1,Isogai Akira1ORCID

Affiliation:

1. Department of Biomaterial Sciences , The University of Tokyo , 1-1-1 Yayoi , Bunkyo-ku , Tokyo 113-8657 , Japan

Abstract

Abstract Eucalyptus (Eucalyptus globulus) cellulose was isolated from wood powder by dewaxing, delignification, and subsequent 4% NaOH extraction. 2,2,6,6-Tetramethyl-piperidine-1-oxyl (TEMPO)-oxidized eucalyptus celluloses were prepared from never-dried eucalyptus cellulose (EC) in yields of 96% and 72% (based on the dry weight of EC) when oxidized with NaOCl of 5 and 10 mmol/g-EC, respectively. Their carboxy contents were 1.4 and 1.8 mmol/g, respectively, when determined by conductivity titration. The crystallinity of cellulose I for EC decreased by TEMPO-mediated oxidation, showing that the originally crystalline region in EC was partly converted to disordered regions by TEMPO-mediated oxidation. Correspondingly, the relative signal area of C6‒OH/C1 with the trans-gauche (tg) conformation attributed to crystalline cellulose I in the solid-state 13C NMR spectrum of EC decreased from 0.42 to 0.34 by TEMPO-mediated oxidation with NaOCl of 10 mmol/g-EC. TEMPO-oxidized EC prepared with NaOCl of 10 mmol/g-EC was almost completely converted into individual TEMPO-oxidized EC nanofibrils (TEMPO-ECNFs) of homogeneous widths of ∼3 nm widths and lengths of >1 μm by mechanical disintegration in water. However, the TEMPO-ECNFs contained many kinks and had uneven surfaces, probably owing to significant damage occurring on the surface cellulose molecules of crystalline cellulose microfibrils during TEMPO-mediated oxidation.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3