Affiliation:
1. Department of Biomaterial Sciences , The University of Tokyo , 1-1-1 Yayoi , Bunkyo-ku , Tokyo 113-8657 , Japan
Abstract
Abstract
Eucalyptus (Eucalyptus globulus) cellulose was isolated from wood powder by dewaxing, delignification, and subsequent 4% NaOH extraction. 2,2,6,6-Tetramethyl-piperidine-1-oxyl (TEMPO)-oxidized eucalyptus celluloses were prepared from never-dried eucalyptus cellulose (EC) in yields of 96% and 72% (based on the dry weight of EC) when oxidized with NaOCl of 5 and 10 mmol/g-EC, respectively. Their carboxy contents were 1.4 and 1.8 mmol/g, respectively, when determined by conductivity titration. The crystallinity of cellulose I for EC decreased by TEMPO-mediated oxidation, showing that the originally crystalline region in EC was partly converted to disordered regions by TEMPO-mediated oxidation. Correspondingly, the relative signal area of C6‒OH/C1 with the trans-gauche (tg) conformation attributed to crystalline cellulose I in the solid-state 13C NMR spectrum of EC decreased from 0.42 to 0.34 by TEMPO-mediated oxidation with NaOCl of 10 mmol/g-EC. TEMPO-oxidized EC prepared with NaOCl of 10 mmol/g-EC was almost completely converted into individual TEMPO-oxidized EC nanofibrils (TEMPO-ECNFs) of homogeneous widths of ∼3 nm widths and lengths of >1 μm by mechanical disintegration in water. However, the TEMPO-ECNFs contained many kinks and had uneven surfaces, probably owing to significant damage occurring on the surface cellulose molecules of crystalline cellulose microfibrils during TEMPO-mediated oxidation.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献