Affiliation:
1. Department of Mathematics and Statistics , Indian Institute of Technology Kanpur , Kanpur , 208016 U. P. India
Abstract
Abstract
Let
𝔤
{\mathfrak{g}}
be a complex semisimple Lie algebra and let
θ be a finite-order automorphism of
𝔤
{\mathfrak{g}}
. Let
𝔤
0
{\mathfrak{g}_{0}}
be the subalgebra
{
X
∈
𝔤
:
θ
(
X
)
=
X
}
{\{X\in\mathfrak{g}:\theta(X)=X\}}
. In this article, we study for
which pairs
(
V
1
,
V
2
)
{(V_{1},V_{2})}
, consisting of two irreducible finite-dimensional
representations of
𝔤
{\mathfrak{g}}
, we have
res
𝔤
0
V
1
≃
res
𝔤
0
V
2
.
\operatorname{res}_{\mathfrak{g}_{0}}V_{1}\simeq\operatorname{res}_{\mathfrak{%
g}_{0}}V_{2}.
In many cases, we show that
V
1
{V_{1}}
and
V
2
{V_{2}}
have isomorphic restrictions to
𝔤
0
{\mathfrak{g}_{0}}
if and only if
V
1
{V_{1}}
is isomorphic to
V
2
σ
{V_{2}^{\sigma}}
for some outer automorphism σ of
𝔤
{\mathfrak{g}}
.
Subject
Applied Mathematics,General Mathematics
Reference10 articles.
1. N. Bourbaki,
Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées,
Act. Sci. Indust. 1364,
Hermann, Paris, 1975.
2. J. Bandlow, A. Schilling and N. M. Thiéry,
On the uniqueness of promotion operators on tensor products of type A crystals,
J. Algebraic Combin. 31 (2010), no. 2, 217–251.
3. C. Bowman and R. Paget,
The uniqueness of plethystic factorisation,
Trans. Amer. Math. Soc. 373 (2020), no. 3, 1653–1666.
4. T. Gerber, J. Guilhot and C. Lecouvey,
Generalised howe dualityand injectivity of induction: The symplectic case,
preprint (2021), https://arxiv.org/abs/2110.04029.
5. J. Guilhot and C. Lecouvey,
Isomorphic induced modules and Dynkin diagram automorphisms of semisimple Lie algebras,
Glasg. Math. J. 58 (2016), no. 1, 187–203.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献