Formality properties of finitely generated groups and Lie algebras

Author:

Suciu Alexander I.ORCID,Wang HeORCID

Abstract

Abstract We explore the graded-formality and filtered-formality properties of finitely generated groups by studying the various Lie algebras over a field of characteristic 0 attached to such groups, including the Malcev Lie algebra, the associated graded Lie algebra, the holonomy Lie algebra, and the Chen Lie algebra. We explain how these notions behave with respect to split injections, coproducts, direct products, as well as field extensions, and how they are inherited by solvable and nilpotent quotients. A key tool in this analysis is the 1-minimal model of the group, and the way this model relates to the aforementioned Lie algebras. We illustrate our approach with examples drawn from a variety of group-theoretic and topological contexts, such as finitely generated torsion-free nilpotent groups, link groups, and fundamental groups of Seifert fibered manifolds.

Funder

National Science Foundation

National Security Agency

Simons Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference160 articles.

1. Homology, Massey products and maps between groups;J. Pure Appl. Algebra,1975

2. On the associated graded ring of a group ring;J. Algebra,1968

3. Fabulous pro-p-groups;Ann. Sci. Math. Québec,2008

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reduced resonance schemes and Chen ranks;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-07-23

2. Diagrams for primitive cycles in spaces of pure braids and string links;Annales de l'Institut Fourier;2024-07-03

3. On the behavior of Massey products under field extension;Journal of Pure and Applied Algebra;2024-07

4. Milnor fibrations of arrangements with trivial algebraic monodromy;Revue Roumaine Mathematiques Pures Appliquees;2024-06-30

5. Zassenhaus filtrations and right-angled Artin groups;Journal of Algebra and Its Applications;2024-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3