Explicit bounds for the solutions of superelliptic equations over number fields

Author:

Bérczes Attila1,Bugeaud Yann2,Győry Kálmán1,Mello Jorge3,Ostafe Alina4,Sha Min5

Affiliation:

1. Institute of Mathematics , [ 37599]University of Debrecen, 4010 Debrecen , P. O. BOX 12 , Hungary

2. Institut de Recherche Mathématique Avancée, U.M.R. 7501 , [ 27083]Université de Strasbourg et C.N.R.S., 7, rue René Descartes, 67084 Strasbourg ; and Institut universitaire de France, Paris , France

3. Department of Mathematics and Statistics , [ 6918]Oakland University, Rochester , MI 48309 , USA

4. School of Mathematics and Statistics , [ 7800]University of New South Wales, Sydney , NSW 2052 , Australia

5. School of Mathematical Sciences , [ 12451]South China Normal University, Guangzhou 510631 , P. R. China

Abstract

Abstract Let f be a polynomial with coefficients in the ring O S {O_{S}} of S-integers of a number field K, b a non-zero S-integer, and m an integer 2 {\geq 2} . We consider the following equation ( ) {(\star)} : f ( x ) = b y m {f(x)=by^{m}} in x , y O S {x,y\in O_{S}} . Under the well-known LeVeque condition, we give fully explicit upper bounds in terms of K , S , f , m {K,S,f,m} and the S-norm of b for the heights of the solutions x of equation ( ) {(\star)} . Further, we give an explicit bound C in terms of K , S , f {K,S,f} and the S-norm of b such that if m > C {m>C} equation ( ) {(\star)} has only solutions with y = 0 {y=0} or a root of unity. Our results are more detailed versions of work of Trelina, Brindza, Shorey and Tijdeman, Voutier and Bugeaud, and extend earlier results of Bérczes, Evertse, and Győry to polynomials with multiple roots. In contrast with the previous results, our bounds depend on the S-norm of b instead of its height.

Funder

Australian Research Council

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3