Congruence subgroups and crystallographic quotients of small Coxeter groups

Author:

Kumar Pravin1,Naik Tushar Kanta2,Singh Mahender1

Affiliation:

1. Department of Mathematical Sciences , Indian Institute of Science Education and Research (IISER) Mohali , Sector 81, S. A. S. Nagar, P. O. Manauli , Punjab 140306 , India

2. School of Mathematical Sciences , National Institute of Science Education and Research , Bhubaneswar, An OCC of Homi Bhabha National Institute, P. O. Jatni , Khurda 752050, Odisha , India

Abstract

Abstract Small Coxeter groups are precisely the ones for which the Tits representation is integral, which makes the study of their congruence subgroups relevant. The symmetric group S n {S_{n}} has three natural extensions, namely the braid group B n {B_{n}} , the twin group T n {T_{n}} and the triplet group L n {L_{n}} . The latter two groups are small Coxeter groups, and play the role of braid groups under the Alexander–Markov correspondence for appropriate knot theories, with their pure subgroups admitting suitable hyperplane arrangements as Eilenberg-MacLane spaces. In this paper, we prove that the congruence subgroup property fails for infinite small Coxeter groups which are not virtually abelian. As an application, we deduce that the congruence subgroup property fails for both T n {T_{n}} and L n {L_{n}} when n 4 {n\geq 4} . We also determine subquotients of principal congruence subgroups of T n {T_{n}} , and identify the pure twin group P T n {PT_{n}} and the pure triplet group P L n {PL_{n}} with suitable principal congruence subgroups. Further, we investigate crystallographic quotients of these two families of small Coxeter groups, and prove that T n / P T n {T_{n}/PT_{n}^{\prime}} , T n / T n ′′ {T_{n}/T_{n}^{\prime\prime}} and L n / P L n {L_{n}/PL_{n}^{\prime}} are crystallographic groups. We also determine crystallographic dimensions of these groups and identify the holonomy representation of T n / T n ′′ {T_{n}/T_{n}^{\prime\prime}} .

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference35 articles.

1. J. Appel, W. Bloomquist, K. Gravel and A. Holden, On quotients of congruence subgroups of braid groups, preprint (2020), https://arxiv.org/abs/2011.13876.

2. H. Baik, B. Petri and J. Raimbault, Subgroup growth of right-angled Artin and Coxeter groups, J. Lond. Math. Soc. (2) 101 (2020), no. 2, 556–588.

3. V. Bardakov, M. Singh and A. Vesnin, Structural aspects of twin and pure twin groups, Geom. Dedicata 203 (2019), 135–154.

4. A. Björner, Topological Methods, Handbook of Combinatorics. Vol. 1 and 2, Elsevier Science, Amsterdam (1995), 1819–1872.

5. A. Björner and V. Welker, The homology of “k-equal” manifolds and related partition lattices, Adv. Math. 110 (1995), no. 2, 277–313.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3