Affiliation:
1. Department of Mathematics , 567088 Dera Natung Government College , Itanagar 791113 , India
2. Department of Mathematics , 75924 Rajiv Gandhi University , Doimukh - 791112 , India
3. Department of Medical Research , China Medical University Hospital , China Medical University (Taiwan) , Taichung , Taiwan ; and Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
Abstract
Abstract
Define an infinite matrix
D
α
=
(
d
n
,
v
α
)
\mathfrak{D}^{\alpha}=(d^{\alpha}_{n,v})
by
d
n
,
v
α
=
{
v
α
σ
(
α
)
(
n
)
,
v
∣
n
,
0
,
v
∤
n
,
d^{\alpha}_{n,v}=\begin{cases}\dfrac{v^{\alpha}}{\sigma^{(\alpha)}(n)},&v\mid n,\\
0,&v\nmid n,\end{cases}
where
σ
(
α
)
(
n
)
\sigma^{(\alpha)}(n)
is defined to be the sum of the 𝛼-th power of the positive divisors of
n
∈
N
n\in\mathbb{N}
, and construct the matrix domains
ℓ
p
(
D
α
)
\ell_{p}(\mathfrak{D}^{\alpha})
(
0
<
p
<
∞
0<p<\infty
),
c
0
(
D
α
)
c_{0}(\mathfrak{D}^{\alpha})
,
c
(
D
α
)
c(\mathfrak{D}^{\alpha})
and
ℓ
∞
(
D
α
)
\ell_{\infty}(\mathfrak{D}^{\alpha})
defined by the matrix
D
α
\mathfrak{D}^{\alpha}
.
We develop Schauder bases and determine 𝛼-, 𝛽- and 𝛾-duals of these new spaces.
We characterize some matrix transformation from
ℓ
p
(
D
α
)
\ell_{p}(\mathfrak{D}^{\alpha})
,
c
0
(
D
α
)
c_{0}(\mathfrak{D}^{\alpha})
,
c
(
D
α
)
c(\mathfrak{D}^{\alpha})
and
ℓ
∞
(
D
α
)
\ell_{\infty}(\mathfrak{D}^{\alpha})
to
ℓ
∞
\ell_{\infty}
, 𝑐,
c
0
c_{0}
and
ℓ
1
\ell_{1}
.
Furthermore, we determine some criteria for compactness of an operator (or matrix) from
X
∈
{
ℓ
p
(
D
α
)
,
c
0
(
D
α
)
,
c
(
D
α
)
,
ℓ
∞
(
D
α
)
}
X\in\{\ell_{p}(\mathfrak{D}^{\alpha}),c_{0}(\mathfrak{D}^{\alpha}),c(\mathfrak{D}^{\alpha}),\ell_{\infty}(\mathfrak{D}^{\alpha})\}
to
ℓ
∞
\ell_{\infty}
, 𝑐,
c
0
c_{0}
or
ℓ
1
\ell_{1}
.
Funder
Science and Engineering Research Board
Reference27 articles.
1. T. M. Apostol,
Introduction to Analytic Number Theory,
Undergrad. Texts Math.,
Springer, New York, 1976.
2. M. Ayman Mursaleen,
A note on matrix domains of Copson matrix of order 𝛼 and compact operators,
Asian-Eur. J. Math. 15 (2022), no. 7, Article ID 2250140.
3. F. Başar,
Summability Theory and its Applications,
Bentham Science, Oak Park, 2012.
4. F. Başar and B. Altay,
On the space of sequences of 𝑝-bounded variation and related matrix mappings,
Ukraïn. Mat. Zh. 55 (2003), no. 1, 108–118.
5. F. Başar and Y. Sever,
The space
L
q
\mathcal{L}_{q}
of double sequences,
Math. J. Okayama Univ. 51 (2009), 149–157.