Left invariant Ricci flat metrics on Lie groups

Author:

Yan Zaili1,Deng Shaoqiang2

Affiliation:

1. School of Mathematics and Statistics , Ningbo University , Ningbo , Zhejiang Province, 315211 , P. R. China

2. School of Mathematical Sciences and LPMC , Nankai University , Tianjin 300071 , P. R. China

Abstract

Abstract In this paper, we apply the double extension process to study left invariant Ricci flat metrics on solvable and non-solvable Lie groups. An inductive method to produce new Ricci flat metrics from the old ones is established. As applications, we prove the following two results: (i) Every nilpotent Lie group with dim C ( G ) 1 2 ( dim G - 1 ) {\dim\mathrm{C}(G)\geq\frac{1}{2}(\dim G-1)} admits a left invariant Ricci flat metric. (ii) Given a Lie group G, there exists a nilpotent Lie group N with nilpotent index at most 2 such that G × N {G\times N} admits a left invariant Ricci flat metric. We also construct infinitely many new explicit examples of left invariant Ricci flat metrics on nilpotent Lie groups.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference26 articles.

1. M. Ait Ben Haddou, M. Boucetta and H. Lebzioui, Left-invariant Lorentzian flat metrics on Lie groups, J. Lie Theory 22 (2012), no. 1, 269–289.

2. D. V. Alekseevskiĭ and B. N. Kimelfeld, Structure of homogeneous Riemannian spaces with zero Ricci curvature, Funct. Anal. Appl. 9 (1975), 97–102.

3. A. Aubert and A. Medina, Groupes de Lie pseudo-riemanniens plats, Tohoku Math. J. (2) 55 (2003), no. 4, 487–506.

4. M. Bordemann, Nondegenerate invariant bilinear forms on nonassociative algebras, Acta Math. Univ. Comenian. (N. S.) 66 (1997), no. 2, 151–201.

5. M. Boucetta, Ricci flat left invariant Lorentzian metrics on 2-step nilpotent Lie groups, preprint (2010), https://arxiv.org/abs/0910.2563v2.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3