A self-adaptive prescription dose optimization algorithm for radiotherapy

Author:

Yin Chuou1,Yang Peng1,Zhang Shengyuan1,Gu Shaoxian1,Wang Ningyu1,Cui Fengjie1,Hu Jinyou12,Li Xia3,Wu Zhangwen1,Gou Chengjun1

Affiliation:

1. Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , China

2. Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University , Chengdu , Sichuan 610041 , China

3. Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital , Chengdu 610072 , China

Abstract

Abstract Purpose The aim of this study is to investigate an implementation method and the results of a voxel-based self-adaptive prescription dose optimization algorithm for intensity-modulated radiotherapy. Materials and methods The self-adaptive prescription dose optimization algorithm used a quadratic objective function, and the optimization engine was implemented using the molecular dynamics. In the iterative optimization process, the optimization prescription dose changed with the relationship between the initial prescription dose and the calculated dose. If the calculated dose satisfied the initial prescription dose, the optimization prescription dose was equal to the calculated dose; otherwise, the optimization prescription dose was equal to the initial prescription dose. We assessed the performance of the self-adaptive prescription dose optimization algorithm with two cases: a mock head and neck case and a breast case. Isodose lines, dose–volume histogram, and dosimetric parameters were compared between the conventional molecular dynamics optimization algorithm and the self-adaptive prescription dose optimization algorithm. Results The self-adaptive prescription dose optimization algorithm produces the different optimization results compared with the conventional molecular dynamics optimization algorithm. For the mock head and neck case, the planning target volume (PTV) dose uniformity improves, and the dose to organs at risk is reduced, ranging from 1 to 4%. For the breast case, the use of self-adaptive prescription dose optimization algorithm also leads to improvements in the dose distribution, with the dose to organs at risk almost unchanged. Conclusion The self-adaptive prescription dose optimization algorithm can generate an ideal clinical plan more effectively, and it could be integrated into a treatment planning system after more cases are studied.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3