ACSL4 mediates inflammatory bowel disease and contributes to LPS-induced intestinal epithelial cell dysfunction by activating ferroptosis and inflammation

Author:

Lam Ieng-Hou1,Chan Chon-In1,Han Meixia2,Li Lixuan2,Yu Hon-Ho1

Affiliation:

1. Department of Gastroenterology, Kiang Wu Hospital , Macau , SAR 999078 , China

2. Department of Gastroenterology, Guangdong Second Provincial General Hospital , Guangzhou , 510000 , Guangdong Province , China

Abstract

Abstract Background The pathogenesis of inflammatory bowel disease (IBD) is closely associated with the dysfunction of the intestinal epithelial barrier, leading to increased bacterial translocation, leukocyte infiltration, and mucosal injury, which may act as a pivotal or incipient event in the pathophysiology of the disorder. The primary objective of this study is to examine the key genes implicated in IBD and the perturbation of intestinal epithelial cell function. Methods The genes associated with ferroptosis were identified through the utilization of the Gene Expression Omnibus (GEO) database and the GeneCard database. Additionally, an in vitro model of IBD was established by stimulating Caco-2 cells with lipopolysaccharides (LPSs) to investigate the molecular mechanisms underlying intestinal epithelial cell dysfunction. Results We discovered evidence that establishes a connection between ferroptosis and the inflammatory responses associated with the development of IBD. This evidence suggests that IBD patients who exhibit an inflammatory response have higher expression of the acyl-CoA synthetase long-chain family member 4 (ACSL4) gene compared to IBD patients without an inflammatory response or healthy individuals. Exposure to LPS at concentrations of 1 or 10 μg/mL resulted in a significant upregulation of ferroptosis-related genes ACSL4, GPX4, and SLC7A11, as well as an increase in ferroptosis biomarkers MDA and a decrease in CAT and GSH-Px levels compared to the control group. Inhibition of ACSL4 using si-ACSL4 or rosiglitazone demonstrated protective effects against LPS-induced ferroptosis and NF-κB-mediated inflammatory response. Conclusion ACSL4 shows potential as a promising target for ferroptosis in the prevention and treatment of IBD and dysfunction of intestinal epithelial cells.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3