Shear transfer strength estimation of concrete elements using generalized artificial neural network models

Author:

Zayan Hend S.1,Mahmoud Akram S.1,Hamdullah Dhifaf N.1

Affiliation:

1. Civil Engineering Department, Engineering College, University of Anbar , Ramadi , Iraq

Abstract

Abstract Based on published test findings, this article outlines the use of artificial neural networks (ANNs) to forecast the efficiency factor of shear transfer strength in concrete. Backpropagation neural networks with feed-forward have been employed. The ANN model was created by incorporating a huge experimental database and carefully selecting the architecture and training procedure. The presented ANN model offered a more accurate tool to compute R (where R is a measure of the closeness of association of the points in a scatterplot to a linear regression line based on those points) and capture the impacts of five primary parameters: concrete compressive strength, steel reinforcement ratio, steel yield strength, fiber volumetric ration, and steel fiber aspect ratio are given from experimental data. The obtained results reveal that the first important parameter is concrete compressive strength. In addition, ρ y f y parameter represents the normalized tensile force in steel reinforcements of section, whereas the smallest importance parameter L/D is aspect ratio of steel fibers. Also, the current study illustrated the facilities of using generalized artificial neural networks on predicting the shear transfer strength across the concrete sections, whether they are fibrous or not. From the results, the correlation factor (R 2) is estimated to be about 83%, which means it had a good correlation within the input parameters. In addition, the mean absolute percentage error was 2.06.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3