Deformation of unsaturated collapsible soils under suction control

Author:

Al-Obaidi Qasim A.1,Schanz Tom2

Affiliation:

1. Civil Engineering Department, University of Technology , Baghdad , Iraq

2. Chair of Soil Mechanics, Foundation Engineering and Environmental Geotechnics, Department of Civil and Environmental Engineering, Ruhr-Universität Bochum , Bochum , Germany

Abstract

Abstract Collapsible soils present significant geotechnical and structural engineering challenges worldwide. They can be found in arid or semi-arid regions and are directly affected by the multi-step wetting procedure due to the reduction of soil suction. The main objectives of this paper are to investigate the volume change behaviour, collapse mechanism and deformation characteristics under the control of suction and net vertical stress. In this study, three types of collapsible soils were investigated such as natural soils of sandy gypseous, silty loess, and artificial soil of gypsum–sand mixture. A series of constant net stress-suction control (wetting and drying) tests using a combination of axis-translation and vapor equilibrium techniques were deployed to cover a wide range of applied suction. The test results show that large volume change and collapse deformation occur upon a stepwise suction decrease. On the other hand, shrinkage behaviour resulting from increases in imposed suction is observed during the drying path. The collapse deformation depends on the stress path and is a function of net normal stress, suction, dry density, and degree of saturation. The water content and the degree of saturation dramatically increase as the applied suction decreases from the initial high to zero values at the drying path.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Materials Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3